The ANSS event ID is nn00421825 and the event page is at https://earthquake.usgs.gov/earthquakes/eventpage/nn00421825/executive.
2013/08/29 11:20:18 39.081 -115.502 0.0 3.8 Nevada
USGS/SLU Moment Tensor Solution
ENS 2013/08/29 11:20:18:0 39.08 -115.50 0.0 3.8 Nevada
Stations used:
NN.KVN NN.PAH NN.RUB NN.RYN NN.WAK TA.R11A UU.BGU UU.BRPU
UU.CCUT UU.KNB UU.MPU UU.PSUT UU.RDMU UU.SRU UU.TCRU
UW.IRON
Filtering commands used:
cut a -30 a 180
rtr
taper w 0.1
hp c 0.02 n 3
lp c 0.10 n 3
br c 0.12 0.25 n 4 p 2
Best Fitting Double Couple
Mo = 1.05e+21 dyne-cm
Mw = 3.28
Z = 10 km
Plane Strike Dip Rake
NP1 345 70 -142
NP2 240 55 -25
Principal Axes:
Axis Value Plunge Azimuth
T 1.05e+21 9 109
N 0.00e+00 48 9
P -1.05e+21 41 208
Moment Tensor: (dyne-cm)
Component Value
Mxx -3.61e+20
Mxy -5.69e+20
Mxz 4.03e+20
Myy 7.77e+20
Myz 3.96e+20
Mzz -4.16e+20
##------------
########--------------
#############---------------
###############---------------
##################----------------
###################-################
################------################
##############---------#################
###########-------------################
##########----------------################
########------------------################
#######--------------------###############
######---------------------###############
####----------------------########## #
###-----------------------########## T #
#----------- -----------#########
----------- P -----------###########
---------- -----------##########
----------------------########
--------------------########
-----------------#####
-------------#
Global CMT Convention Moment Tensor:
R T P
-4.16e+20 4.03e+20 -3.96e+20
4.03e+20 -3.61e+20 5.69e+20
-3.96e+20 5.69e+20 7.77e+20
Details of the solution is found at
http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20130829112018/index.html
|
STK = 240
DIP = 55
RAKE = -25
MW = 3.28
HS = 10.0
The NDK file is 20130829112018.ndk The waveform inversion is preferred.
The following compares this source inversion to those provided by others. The purpose is to look for major differences and also to note slight differences that might be inherent to the processing procedure. For completeness the USGS/SLU solution is repeated from above.
USGS/SLU Moment Tensor Solution
ENS 2013/08/29 11:20:18:0 39.08 -115.50 0.0 3.8 Nevada
Stations used:
NN.KVN NN.PAH NN.RUB NN.RYN NN.WAK TA.R11A UU.BGU UU.BRPU
UU.CCUT UU.KNB UU.MPU UU.PSUT UU.RDMU UU.SRU UU.TCRU
UW.IRON
Filtering commands used:
cut a -30 a 180
rtr
taper w 0.1
hp c 0.02 n 3
lp c 0.10 n 3
br c 0.12 0.25 n 4 p 2
Best Fitting Double Couple
Mo = 1.05e+21 dyne-cm
Mw = 3.28
Z = 10 km
Plane Strike Dip Rake
NP1 345 70 -142
NP2 240 55 -25
Principal Axes:
Axis Value Plunge Azimuth
T 1.05e+21 9 109
N 0.00e+00 48 9
P -1.05e+21 41 208
Moment Tensor: (dyne-cm)
Component Value
Mxx -3.61e+20
Mxy -5.69e+20
Mxz 4.03e+20
Myy 7.77e+20
Myz 3.96e+20
Mzz -4.16e+20
##------------
########--------------
#############---------------
###############---------------
##################----------------
###################-################
################------################
##############---------#################
###########-------------################
##########----------------################
########------------------################
#######--------------------###############
######---------------------###############
####----------------------########## #
###-----------------------########## T #
#----------- -----------#########
----------- P -----------###########
---------- -----------##########
----------------------########
--------------------########
-----------------#####
-------------#
Global CMT Convention Moment Tensor:
R T P
-4.16e+20 4.03e+20 -3.96e+20
4.03e+20 -3.61e+20 5.69e+20
-3.96e+20 5.69e+20 7.77e+20
Details of the solution is found at
http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20130829112018/index.html
|
NSL Moment Tensor Solution
USGS/SLU Regional Moment Tensor Solution
Moment Tensor
NEIC Mwr
Contributed Solutions
Moment Tensor
Contributed Moment Tensors
Contributor Code Type Magnitude Depth NP1 NP2
us nn00421825-neic-mwr Mwr 3.3 11.0 km 355°, 61°, -137° 240°, 54°, -37°
us nn00421825-neic-mwr
Type
Mwr
Moment
1.22e+14 N-m
Magnitude
3.3
Percent DC
80%
Depth
11.0 km
Author
neic
Updated
2013-08-29 16:03:22 UTC
Principal Axes
Axis Value Plunge Azimuth
T 1.160 4° 116°
N 0.112 40° 23°
P -1.272 50° 211°
Nodal Planes
Plane Strike Dip Rake
NP1 355° 61° -137°
NP2 240° 54° -37°
|
Given the availability of digital waveforms for determination of the moment tensor, this section documents the added processing leading to mLg, if appropriate to the region, and ML by application of the respective IASPEI formulae. As a research study, the linear distance term of the IASPEI formula for ML is adjusted to remove a linear distance trend in residuals to give a regionally defined ML. The defined ML uses horizontal component recordings, but the same procedure is applied to the vertical components since there may be some interest in vertical component ground motions. Residual plots versus distance may indicate interesting features of ground motion scaling in some distance ranges. A residual plot of the regionalized magnitude is given as a function of distance and azimuth, since data sets may transcend different wave propagation provinces.
Left: ML computed using the IASPEI formula for Horizontal components. Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
Left: ML computed using the IASPEI formula for Vertical components (research). Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
![]() |
The focal mechanism was determined using broadband seismic waveforms. The location of the event (star) and the stations used for (red) the waveform inversion are shown in the next figure.
|
|
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green's functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
cut a -30 a 180 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.10 n 3 br c 0.12 0.25 n 4 p 2The results of this grid search are as follow:
DEPTH STK DIP RAKE MW FIT
WVFGRD96 0.5 60 85 -5 2.87 0.2007
WVFGRD96 1.0 60 90 0 2.92 0.2296
WVFGRD96 2.0 65 90 -5 3.04 0.3186
WVFGRD96 3.0 65 90 -10 3.10 0.3487
WVFGRD96 4.0 65 90 -20 3.14 0.3600
WVFGRD96 5.0 245 80 25 3.20 0.3779
WVFGRD96 6.0 250 70 30 3.22 0.3916
WVFGRD96 7.0 245 75 20 3.24 0.3980
WVFGRD96 8.0 250 70 30 3.27 0.4030
WVFGRD96 9.0 235 50 -35 3.29 0.4053
WVFGRD96 10.0 240 55 -25 3.28 0.4081
WVFGRD96 11.0 240 55 -25 3.29 0.4071
WVFGRD96 12.0 240 60 -25 3.30 0.4051
WVFGRD96 13.0 240 60 -25 3.30 0.4017
WVFGRD96 14.0 240 60 -20 3.31 0.3970
WVFGRD96 15.0 245 65 -20 3.31 0.3920
WVFGRD96 16.0 240 65 -25 3.33 0.3891
WVFGRD96 17.0 240 65 -25 3.34 0.3855
WVFGRD96 18.0 240 65 -25 3.35 0.3811
WVFGRD96 19.0 240 65 -25 3.36 0.3762
WVFGRD96 20.0 240 65 -30 3.36 0.3711
WVFGRD96 21.0 240 65 -30 3.37 0.3654
WVFGRD96 22.0 240 70 -30 3.39 0.3590
WVFGRD96 23.0 240 70 -35 3.39 0.3520
WVFGRD96 24.0 250 60 15 3.39 0.3459
WVFGRD96 25.0 250 60 15 3.40 0.3413
WVFGRD96 26.0 250 60 15 3.41 0.3369
WVFGRD96 27.0 260 55 35 3.41 0.3305
WVFGRD96 28.0 260 55 35 3.42 0.3266
WVFGRD96 29.0 260 55 35 3.43 0.3242
The best solution is
WVFGRD96 10.0 240 55 -25 3.28 0.4081
The mechanism corresponding to the best fit is
|
|
|
The best fit as a function of depth is given in the following figure:
|
|
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed, the velocity model used in the predictions may not be perfect and the epicentral parameters may be be off. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
cut a -30 a 180 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.10 n 3 br c 0.12 0.25 n 4 p 2
|
| Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated. The time scale is relative to the first trace sample. |
|
| Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to the waveforms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
The WUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows (The format is in the model96 format of Computer Programs in Seismology).
MODEL.01
Model after 8 iterations
ISOTROPIC
KGS
FLAT EARTH
1-D
CONSTANT VELOCITY
LINE08
LINE09
LINE10
LINE11
H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS
1.9000 3.4065 2.0089 2.2150 0.302E-02 0.679E-02 0.00 0.00 1.00 1.00
6.1000 5.5445 3.2953 2.6089 0.349E-02 0.784E-02 0.00 0.00 1.00 1.00
13.0000 6.2708 3.7396 2.7812 0.212E-02 0.476E-02 0.00 0.00 1.00 1.00
19.0000 6.4075 3.7680 2.8223 0.111E-02 0.249E-02 0.00 0.00 1.00 1.00
0.0000 7.9000 4.6200 3.2760 0.164E-10 0.370E-10 0.00 0.00 1.00 1.00