The ANSS event ID is ak013azm6wlj and the event page is at https://earthquake.usgs.gov/earthquakes/eventpage/ak013azm6wlj/executive.
2013/08/27 21:41:33 63.205 -150.604 129.5 5 Alaska
USGS/SLU Moment Tensor Solution ENS 2013/08/27 21:41:33:0 63.21 -150.60 129.5 5.0 Alaska Stations used: AK.COLD AK.DOT AK.PAX AK.PPLA AK.SWD AT.MENT AT.PMR AT.SVW2 AT.TTA Filtering commands used: cut a -30 a 120 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.05 n 3 Best Fitting Double Couple Mo = 2.37e+23 dyne-cm Mw = 4.85 Z = 137 km Plane Strike Dip Rake NP1 16 87 110 NP2 115 20 10 Principal Axes: Axis Value Plunge Azimuth T 2.37e+23 45 305 N 0.00e+00 20 194 P -2.37e+23 38 88 Moment Tensor: (dyne-cm) Component Value Mxx 3.94e+22 Mxy -6.15e+22 Mxz 6.42e+22 Myy -6.59e+22 Myz -2.12e+23 Mzz 2.65e+22 ############-- ################------ ###################--------- ###################----------- #####################------------- ######################-------------- ######## ###########---------------- -######## T ###########----------------- -######## ##########------------------ --#####################--------- ------- --####################---------- P ------- --####################---------- ------- ---##################--------------------- --##################-------------------- ---################--------------------- ---##############--------------------- ----############-------------------- -----#########-------------------# -----#######-----------------# --------##--------------#### ------################ --############ Global CMT Convention Moment Tensor: R T P 2.65e+22 6.42e+22 2.12e+23 6.42e+22 3.94e+22 6.15e+22 2.12e+23 6.15e+22 -6.59e+22 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20130827214133/index.html |
STK = 115 DIP = 20 RAKE = 10 MW = 4.85 HS = 137.0
The NDK file is 20130827214133.ndk The waveform inversion is preferred.
The following compares this source inversion to those provided by others. The purpose is to look for major differences and also to note slight differences that might be inherent to the processing procedure. For completeness the USGS/SLU solution is repeated from above.
USGS/SLU Moment Tensor Solution ENS 2013/08/27 21:41:33:0 63.21 -150.60 129.5 5.0 Alaska Stations used: AK.COLD AK.DOT AK.PAX AK.PPLA AK.SWD AT.MENT AT.PMR AT.SVW2 AT.TTA Filtering commands used: cut a -30 a 120 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.05 n 3 Best Fitting Double Couple Mo = 2.37e+23 dyne-cm Mw = 4.85 Z = 137 km Plane Strike Dip Rake NP1 16 87 110 NP2 115 20 10 Principal Axes: Axis Value Plunge Azimuth T 2.37e+23 45 305 N 0.00e+00 20 194 P -2.37e+23 38 88 Moment Tensor: (dyne-cm) Component Value Mxx 3.94e+22 Mxy -6.15e+22 Mxz 6.42e+22 Myy -6.59e+22 Myz -2.12e+23 Mzz 2.65e+22 ############-- ################------ ###################--------- ###################----------- #####################------------- ######################-------------- ######## ###########---------------- -######## T ###########----------------- -######## ##########------------------ --#####################--------- ------- --####################---------- P ------- --####################---------- ------- ---##################--------------------- --##################-------------------- ---################--------------------- ---##############--------------------- ----############-------------------- -----#########-------------------# -----#######-----------------# --------##--------------#### ------################ --############ Global CMT Convention Moment Tensor: R T P 2.65e+22 6.42e+22 2.12e+23 6.42e+22 3.94e+22 6.15e+22 2.12e+23 6.15e+22 -6.59e+22 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20130827214133/index.html |
us usb000jce7_Mww Type Mww Moment 2.48e+16 N-m Magnitude 4.9 Percent DC 86% Depth 130.0 km Author us Updated 2013-08-27 23:05:45 UTC Principal Axes Axis Value Plunge Azimuth T 2.397 37° 269° N 0.159 16° 11° P -2.556 48° 120° Nodal Planes Plane Strike Dip Rake NP1 193° 84° -74° NP2 302° 17° -160° |
The focal mechanism was determined using broadband seismic waveforms. The location of the event (star) and the stations used for (red) the waveform inversion are shown in the next figure.
![]() |
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green's functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
cut a -30 a 120 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.05 n 3The results of this grid search are as follow:
DEPTH STK DIP RAKE MW FIT WVFGRD96 0.5 320 50 -70 3.84 0.1840 WVFGRD96 1.0 130 40 -85 3.88 0.1996 WVFGRD96 2.0 130 40 -85 3.97 0.2398 WVFGRD96 3.0 140 40 -75 4.04 0.2653 WVFGRD96 4.0 145 40 -70 4.08 0.2591 WVFGRD96 5.0 10 80 15 4.11 0.2632 WVFGRD96 6.0 10 80 10 4.15 0.2783 WVFGRD96 7.0 10 80 10 4.18 0.2958 WVFGRD96 8.0 10 80 10 4.22 0.3067 WVFGRD96 9.0 15 75 10 4.25 0.3191 WVFGRD96 10.0 15 75 10 4.28 0.3275 WVFGRD96 11.0 10 80 10 4.29 0.3296 WVFGRD96 12.0 10 80 10 4.30 0.3283 WVFGRD96 13.0 10 80 10 4.31 0.3249 WVFGRD96 14.0 10 80 10 4.32 0.3226 WVFGRD96 15.0 10 80 10 4.32 0.3243 WVFGRD96 16.0 10 80 15 4.31 0.3250 WVFGRD96 17.0 10 80 15 4.31 0.3255 WVFGRD96 18.0 10 80 15 4.32 0.3256 WVFGRD96 19.0 10 80 15 4.32 0.3257 WVFGRD96 20.0 10 80 15 4.33 0.3269 WVFGRD96 21.0 10 85 15 4.35 0.3264 WVFGRD96 22.0 10 85 15 4.35 0.3276 WVFGRD96 23.0 10 85 15 4.35 0.3295 WVFGRD96 24.0 10 85 15 4.36 0.3282 WVFGRD96 25.0 10 85 15 4.36 0.3292 WVFGRD96 26.0 10 85 20 4.34 0.3292 WVFGRD96 27.0 10 85 20 4.35 0.3312 WVFGRD96 28.0 185 90 -20 4.36 0.3314 WVFGRD96 29.0 185 90 -20 4.36 0.3320 WVFGRD96 30.0 5 90 20 4.37 0.3343 WVFGRD96 31.0 5 90 20 4.37 0.3352 WVFGRD96 32.0 5 90 20 4.38 0.3343 WVFGRD96 33.0 185 90 -20 4.39 0.3344 WVFGRD96 34.0 5 90 20 4.39 0.3353 WVFGRD96 35.0 190 90 -20 4.40 0.3341 WVFGRD96 36.0 10 90 15 4.44 0.3335 WVFGRD96 37.0 190 90 -15 4.45 0.3321 WVFGRD96 38.0 190 90 -15 4.46 0.3329 WVFGRD96 39.0 10 85 10 4.49 0.3345 WVFGRD96 40.0 280 85 -10 4.55 0.3407 WVFGRD96 41.0 280 85 -10 4.56 0.3478 WVFGRD96 42.0 280 85 -10 4.57 0.3547 WVFGRD96 43.0 280 85 -10 4.58 0.3615 WVFGRD96 44.0 280 85 -10 4.58 0.3679 WVFGRD96 45.0 100 90 10 4.60 0.3690 WVFGRD96 46.0 100 90 10 4.61 0.3768 WVFGRD96 47.0 100 90 10 4.62 0.3843 WVFGRD96 48.0 100 90 10 4.62 0.3912 WVFGRD96 49.0 280 85 -5 4.63 0.4022 WVFGRD96 50.0 100 90 10 4.63 0.4036 WVFGRD96 51.0 280 85 -5 4.64 0.4162 WVFGRD96 52.0 100 90 5 4.66 0.4191 WVFGRD96 53.0 100 90 5 4.66 0.4256 WVFGRD96 54.0 100 90 5 4.66 0.4318 WVFGRD96 55.0 280 90 -5 4.67 0.4370 WVFGRD96 56.0 280 90 -5 4.67 0.4414 WVFGRD96 57.0 100 80 5 4.69 0.4456 WVFGRD96 58.0 100 80 5 4.69 0.4516 WVFGRD96 59.0 100 80 5 4.69 0.4568 WVFGRD96 60.0 100 75 0 4.70 0.4620 WVFGRD96 61.0 100 75 0 4.71 0.4676 WVFGRD96 62.0 100 75 0 4.71 0.4725 WVFGRD96 63.0 100 70 0 4.71 0.4805 WVFGRD96 64.0 100 70 0 4.71 0.4880 WVFGRD96 65.0 100 70 0 4.71 0.4949 WVFGRD96 66.0 100 70 0 4.72 0.5012 WVFGRD96 67.0 100 65 0 4.72 0.5075 WVFGRD96 68.0 100 65 0 4.72 0.5145 WVFGRD96 69.0 100 65 0 4.72 0.5211 WVFGRD96 70.0 100 65 0 4.72 0.5272 WVFGRD96 71.0 100 65 0 4.73 0.5327 WVFGRD96 72.0 100 60 0 4.72 0.5378 WVFGRD96 73.0 100 60 0 4.73 0.5440 WVFGRD96 74.0 100 60 0 4.73 0.5505 WVFGRD96 75.0 100 60 0 4.73 0.5568 WVFGRD96 76.0 100 60 0 4.73 0.5628 WVFGRD96 77.0 100 55 0 4.73 0.5689 WVFGRD96 78.0 100 55 0 4.74 0.5758 WVFGRD96 79.0 100 55 0 4.74 0.5822 WVFGRD96 80.0 100 55 0 4.74 0.5885 WVFGRD96 81.0 100 50 0 4.74 0.5949 WVFGRD96 82.0 100 50 0 4.74 0.6021 WVFGRD96 83.0 100 50 0 4.75 0.6092 WVFGRD96 84.0 100 50 5 4.74 0.6160 WVFGRD96 85.0 100 45 5 4.75 0.6229 WVFGRD96 86.0 100 45 5 4.75 0.6303 WVFGRD96 87.0 100 45 5 4.75 0.6374 WVFGRD96 88.0 100 45 5 4.75 0.6448 WVFGRD96 89.0 105 45 5 4.75 0.6519 WVFGRD96 90.0 105 40 5 4.76 0.6600 WVFGRD96 91.0 105 40 5 4.76 0.6678 WVFGRD96 92.0 105 40 5 4.76 0.6752 WVFGRD96 93.0 105 40 5 4.77 0.6829 WVFGRD96 94.0 105 40 5 4.77 0.6906 WVFGRD96 95.0 105 40 5 4.77 0.6979 WVFGRD96 96.0 105 40 5 4.77 0.7049 WVFGRD96 97.0 105 40 5 4.77 0.7120 WVFGRD96 98.0 105 40 5 4.78 0.7190 WVFGRD96 99.0 105 40 5 4.78 0.7254 WVFGRD96 100.0 105 40 5 4.78 0.7319 WVFGRD96 101.0 105 35 5 4.78 0.7385 WVFGRD96 102.0 105 35 5 4.79 0.7451 WVFGRD96 103.0 105 35 5 4.79 0.7512 WVFGRD96 104.0 105 35 5 4.79 0.7570 WVFGRD96 105.0 105 35 5 4.79 0.7628 WVFGRD96 106.0 105 35 5 4.79 0.7685 WVFGRD96 107.0 105 35 5 4.80 0.7737 WVFGRD96 108.0 105 35 5 4.80 0.7790 WVFGRD96 109.0 105 35 5 4.80 0.7835 WVFGRD96 110.0 110 30 10 4.80 0.7884 WVFGRD96 111.0 110 30 10 4.80 0.7929 WVFGRD96 112.0 110 30 10 4.80 0.7976 WVFGRD96 113.0 110 30 10 4.80 0.8018 WVFGRD96 114.0 110 30 10 4.80 0.8060 WVFGRD96 115.0 110 30 5 4.82 0.8104 WVFGRD96 116.0 110 30 5 4.82 0.8141 WVFGRD96 117.0 110 30 5 4.82 0.8182 WVFGRD96 118.0 110 30 5 4.82 0.8217 WVFGRD96 119.0 110 30 5 4.82 0.8250 WVFGRD96 120.0 110 30 5 4.82 0.8284 WVFGRD96 121.0 110 30 5 4.83 0.8309 WVFGRD96 122.0 110 30 5 4.83 0.8342 WVFGRD96 123.0 110 30 5 4.83 0.8361 WVFGRD96 124.0 110 30 5 4.83 0.8390 WVFGRD96 125.0 110 30 5 4.83 0.8408 WVFGRD96 126.0 110 30 5 4.83 0.8427 WVFGRD96 127.0 110 25 5 4.84 0.8447 WVFGRD96 128.0 115 25 10 4.83 0.8464 WVFGRD96 129.0 110 25 5 4.84 0.8481 WVFGRD96 130.0 115 25 10 4.84 0.8494 WVFGRD96 131.0 115 20 10 4.84 0.8509 WVFGRD96 132.0 115 20 10 4.84 0.8515 WVFGRD96 133.0 115 20 10 4.84 0.8531 WVFGRD96 134.0 115 20 10 4.85 0.8535 WVFGRD96 135.0 115 20 10 4.85 0.8545 WVFGRD96 136.0 115 20 10 4.85 0.8544 WVFGRD96 137.0 115 20 10 4.85 0.8549 WVFGRD96 138.0 115 20 10 4.85 0.8548 WVFGRD96 139.0 115 20 10 4.85 0.8539
The best solution is
WVFGRD96 137.0 115 20 10 4.85 0.8549
The mechanism corresponding to the best fit is
![]() |
|
The best fit as a function of depth is given in the following figure:
![]() |
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed, the velocity model used in the predictions may not be perfect and the epicentral parameters may be be off. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
cut a -30 a 120 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.05 n 3
![]() |
Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated. The time scale is relative to the first trace sample. |
![]() |
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to the waveforms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
The WUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows (The format is in the model96 format of Computer Programs in Seismology).
MODEL.01 Model after 8 iterations ISOTROPIC KGS FLAT EARTH 1-D CONSTANT VELOCITY LINE08 LINE09 LINE10 LINE11 H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS 1.9000 3.4065 2.0089 2.2150 0.302E-02 0.679E-02 0.00 0.00 1.00 1.00 6.1000 5.5445 3.2953 2.6089 0.349E-02 0.784E-02 0.00 0.00 1.00 1.00 13.0000 6.2708 3.7396 2.7812 0.212E-02 0.476E-02 0.00 0.00 1.00 1.00 19.0000 6.4075 3.7680 2.8223 0.111E-02 0.249E-02 0.00 0.00 1.00 1.00 0.0000 7.9000 4.6200 3.2760 0.164E-10 0.370E-10 0.00 0.00 1.00 1.00