The ANSS event ID is ak0139xclbxw and the event page is at https://earthquake.usgs.gov/earthquakes/eventpage/ak0139xclbxw/executive.
2013/08/04 07:57:54 61.440 -149.861 36.7 3.8 Alaska
USGS/SLU Moment Tensor Solution ENS 2013/08/04 07:57:54:0 61.44 -149.86 36.7 3.8 Alaska Stations used: AK.FID AK.GHO AK.GLI AK.RC01 AK.SAW AK.SCM AK.SKN AK.SSN AK.SWD AT.PMR Filtering commands used: cut a -30 a 120 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.06 n 3 Best Fitting Double Couple Mo = 1.02e+22 dyne-cm Mw = 3.94 Z = 48 km Plane Strike Dip Rake NP1 220 70 -60 NP2 341 36 -144 Principal Axes: Axis Value Plunge Azimuth T 1.02e+22 19 288 N 0.00e+00 28 29 P -1.02e+22 55 168 Moment Tensor: (dyne-cm) Component Value Mxx -2.38e+21 Mxy -1.97e+21 Mxz 5.70e+21 Myy 8.08e+21 Myz -4.08e+21 Mzz -5.70e+21 ##------------ ############---------- ##################---------# ######################-####### ######################---######### #####################-------######## ####################----------######## ## ##############-------------######## ## T ############----------------####### ### ###########-----------------######## ###############--------------------####### ##############---------------------####### #############----------------------####### ###########-----------------------###### ##########---------- -----------###### ########----------- P -----------##### ######------------ ----------##### ####-------------------------##### ##-------------------------### #-----------------------#### --------------------## -------------- Global CMT Convention Moment Tensor: R T P -5.70e+21 5.70e+21 4.08e+21 5.70e+21 -2.38e+21 1.97e+21 4.08e+21 1.97e+21 8.08e+21 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20130804075754/index.html |
STK = 220 DIP = 70 RAKE = -60 MW = 3.94 HS = 48.0
The NDK file is 20130804075754.ndk The waveform inversion is preferred.
Given the availability of digital waveforms for determination of the moment tensor, this section documents the added processing leading to mLg, if appropriate to the region, and ML by application of the respective IASPEI formulae. As a research study, the linear distance term of the IASPEI formula for ML is adjusted to remove a linear distance trend in residuals to give a regionally defined ML. The defined ML uses horizontal component recordings, but the same procedure is applied to the vertical components since there may be some interest in vertical component ground motions. Residual plots versus distance may indicate interesting features of ground motion scaling in some distance ranges. A residual plot of the regionalized magnitude is given as a function of distance and azimuth, since data sets may transcend different wave propagation provinces.
Left: ML computed using the IASPEI formula for Horizontal components. Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
Left: ML computed using the IASPEI formula for Vertical components (research). Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
![]() |
The focal mechanism was determined using broadband seismic waveforms. The location of the event (star) and the stations used for (red) the waveform inversion are shown in the next figure.
![]() |
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green's functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
cut a -30 a 120 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.06 n 3The results of this grid search are as follow:
DEPTH STK DIP RAKE MW FIT WVFGRD96 0.5 25 45 95 3.22 0.2646 WVFGRD96 1.0 195 45 90 3.24 0.2639 WVFGRD96 2.0 195 45 85 3.37 0.3455 WVFGRD96 3.0 190 50 80 3.42 0.3495 WVFGRD96 4.0 15 45 -90 3.46 0.3490 WVFGRD96 5.0 225 80 -10 3.42 0.3568 WVFGRD96 6.0 230 80 -5 3.43 0.3698 WVFGRD96 7.0 240 70 -5 3.45 0.3841 WVFGRD96 8.0 240 70 -5 3.48 0.3995 WVFGRD96 9.0 70 60 30 3.52 0.4079 WVFGRD96 10.0 70 65 30 3.54 0.4211 WVFGRD96 11.0 70 65 30 3.55 0.4354 WVFGRD96 12.0 70 65 30 3.56 0.4482 WVFGRD96 13.0 70 65 30 3.57 0.4591 WVFGRD96 14.0 70 65 30 3.59 0.4689 WVFGRD96 15.0 75 65 25 3.60 0.4779 WVFGRD96 16.0 70 70 30 3.61 0.4864 WVFGRD96 17.0 70 70 25 3.62 0.4941 WVFGRD96 18.0 70 70 25 3.63 0.5017 WVFGRD96 19.0 70 70 25 3.64 0.5087 WVFGRD96 20.0 70 70 25 3.65 0.5149 WVFGRD96 21.0 230 70 -35 3.67 0.5248 WVFGRD96 22.0 230 70 -40 3.68 0.5381 WVFGRD96 23.0 230 70 -40 3.69 0.5510 WVFGRD96 24.0 230 70 -40 3.69 0.5626 WVFGRD96 25.0 230 70 -40 3.70 0.5735 WVFGRD96 26.0 230 70 -40 3.71 0.5841 WVFGRD96 27.0 230 70 -40 3.72 0.5927 WVFGRD96 28.0 230 70 -40 3.72 0.6011 WVFGRD96 29.0 230 70 -40 3.73 0.6077 WVFGRD96 30.0 230 75 -45 3.74 0.6139 WVFGRD96 31.0 230 75 -45 3.75 0.6221 WVFGRD96 32.0 230 75 -45 3.75 0.6282 WVFGRD96 33.0 225 70 -45 3.76 0.6350 WVFGRD96 34.0 225 70 -45 3.76 0.6400 WVFGRD96 35.0 225 70 -45 3.77 0.6465 WVFGRD96 36.0 225 70 -45 3.78 0.6519 WVFGRD96 37.0 225 70 -45 3.79 0.6571 WVFGRD96 38.0 225 70 -45 3.79 0.6608 WVFGRD96 39.0 220 70 -45 3.81 0.6654 WVFGRD96 40.0 225 70 -60 3.90 0.6622 WVFGRD96 41.0 225 70 -55 3.90 0.6680 WVFGRD96 42.0 225 70 -55 3.91 0.6723 WVFGRD96 43.0 220 70 -55 3.91 0.6768 WVFGRD96 44.0 220 70 -55 3.92 0.6795 WVFGRD96 45.0 220 70 -55 3.93 0.6821 WVFGRD96 46.0 220 70 -55 3.93 0.6832 WVFGRD96 47.0 220 70 -60 3.94 0.6838 WVFGRD96 48.0 220 70 -60 3.94 0.6840 WVFGRD96 49.0 220 70 -60 3.95 0.6833 WVFGRD96 50.0 220 70 -60 3.95 0.6823 WVFGRD96 51.0 220 70 -60 3.95 0.6802 WVFGRD96 52.0 220 70 -60 3.96 0.6782 WVFGRD96 53.0 220 70 -60 3.96 0.6753 WVFGRD96 54.0 220 70 -60 3.96 0.6726 WVFGRD96 55.0 220 70 -60 3.96 0.6693 WVFGRD96 56.0 220 70 -60 3.97 0.6651 WVFGRD96 57.0 220 70 -60 3.97 0.6616 WVFGRD96 58.0 220 70 -60 3.97 0.6563 WVFGRD96 59.0 215 70 -60 3.97 0.6534 WVFGRD96 60.0 215 70 -60 3.98 0.6491 WVFGRD96 61.0 215 70 -60 3.98 0.6452 WVFGRD96 62.0 215 70 -60 3.98 0.6407 WVFGRD96 63.0 215 70 -60 3.98 0.6363 WVFGRD96 64.0 215 70 -60 3.98 0.6329 WVFGRD96 65.0 215 70 -60 3.98 0.6282 WVFGRD96 66.0 215 70 -60 3.98 0.6239 WVFGRD96 67.0 215 70 -60 3.99 0.6205 WVFGRD96 68.0 215 70 -60 3.99 0.6153 WVFGRD96 69.0 215 70 -60 3.99 0.6115 WVFGRD96 70.0 215 70 -60 3.99 0.6073 WVFGRD96 71.0 215 70 -60 3.99 0.6022 WVFGRD96 72.0 215 70 -60 3.99 0.5988 WVFGRD96 73.0 215 70 -60 3.99 0.5944 WVFGRD96 74.0 215 70 -60 3.99 0.5894 WVFGRD96 75.0 215 70 -60 3.99 0.5861 WVFGRD96 76.0 215 75 -60 4.00 0.5818 WVFGRD96 77.0 215 75 -60 4.00 0.5786 WVFGRD96 78.0 215 75 -60 4.00 0.5755 WVFGRD96 79.0 215 75 -60 4.00 0.5730 WVFGRD96 80.0 215 75 -65 4.00 0.5697 WVFGRD96 81.0 215 75 -65 4.01 0.5665 WVFGRD96 82.0 215 75 -65 4.01 0.5644 WVFGRD96 83.0 215 75 -65 4.01 0.5612 WVFGRD96 84.0 215 75 -65 4.01 0.5580 WVFGRD96 85.0 215 75 -65 4.01 0.5555 WVFGRD96 86.0 215 75 -65 4.01 0.5532 WVFGRD96 87.0 215 75 -70 4.01 0.5495 WVFGRD96 88.0 215 80 -70 4.02 0.5476 WVFGRD96 89.0 215 80 -70 4.02 0.5458 WVFGRD96 90.0 215 80 -70 4.03 0.5443 WVFGRD96 91.0 215 80 -75 4.03 0.5415 WVFGRD96 92.0 215 80 -75 4.03 0.5409 WVFGRD96 93.0 215 80 -80 4.04 0.5389 WVFGRD96 94.0 215 80 -85 4.05 0.5373 WVFGRD96 95.0 215 80 -85 4.05 0.5357 WVFGRD96 96.0 215 80 -85 4.05 0.5346 WVFGRD96 97.0 215 80 -85 4.05 0.5329 WVFGRD96 98.0 215 80 -85 4.05 0.5308 WVFGRD96 99.0 215 80 -85 4.05 0.5292 WVFGRD96 100.0 215 80 -85 4.05 0.5273 WVFGRD96 101.0 215 80 -85 4.06 0.5256 WVFGRD96 102.0 15 10 -110 4.06 0.5229 WVFGRD96 103.0 15 10 -110 4.06 0.5215 WVFGRD96 104.0 215 80 -90 4.07 0.5190 WVFGRD96 105.0 15 10 -110 4.06 0.5173 WVFGRD96 106.0 15 10 -110 4.06 0.5147 WVFGRD96 107.0 215 80 -90 4.07 0.5118 WVFGRD96 108.0 215 80 -90 4.07 0.5102 WVFGRD96 109.0 215 80 -90 4.07 0.5073 WVFGRD96 110.0 50 10 -75 4.08 0.5050 WVFGRD96 111.0 50 10 -70 4.08 0.5025 WVFGRD96 112.0 60 10 -60 4.09 0.5002 WVFGRD96 113.0 60 10 -60 4.09 0.4983 WVFGRD96 114.0 60 10 -60 4.09 0.4955 WVFGRD96 115.0 65 10 -55 4.10 0.4927 WVFGRD96 116.0 65 10 -55 4.10 0.4908 WVFGRD96 117.0 65 10 -55 4.10 0.4879 WVFGRD96 118.0 65 10 -55 4.10 0.4858 WVFGRD96 119.0 70 10 -50 4.10 0.4829 WVFGRD96 120.0 70 10 -50 4.10 0.4800 WVFGRD96 121.0 70 10 -50 4.10 0.4781 WVFGRD96 122.0 50 5 -70 4.10 0.4753 WVFGRD96 123.0 50 5 -70 4.10 0.4726 WVFGRD96 124.0 50 5 -70 4.10 0.4698 WVFGRD96 125.0 60 5 -60 4.10 0.4669 WVFGRD96 126.0 60 5 -60 4.10 0.4647 WVFGRD96 127.0 60 5 -60 4.10 0.4622 WVFGRD96 128.0 60 5 -60 4.11 0.4590 WVFGRD96 129.0 60 5 -60 4.11 0.4565
The best solution is
WVFGRD96 48.0 220 70 -60 3.94 0.6840
The mechanism corresponding to the best fit is
![]() |
|
The best fit as a function of depth is given in the following figure:
![]() |
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed, the velocity model used in the predictions may not be perfect and the epicentral parameters may be be off. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
cut a -30 a 120 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.06 n 3
![]() |
Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated. The time scale is relative to the first trace sample. |
![]() |
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to the waveforms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
The WUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows (The format is in the model96 format of Computer Programs in Seismology).
MODEL.01 Model after 8 iterations ISOTROPIC KGS FLAT EARTH 1-D CONSTANT VELOCITY LINE08 LINE09 LINE10 LINE11 H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS 1.9000 3.4065 2.0089 2.2150 0.302E-02 0.679E-02 0.00 0.00 1.00 1.00 6.1000 5.5445 3.2953 2.6089 0.349E-02 0.784E-02 0.00 0.00 1.00 1.00 13.0000 6.2708 3.7396 2.7812 0.212E-02 0.476E-02 0.00 0.00 1.00 1.00 19.0000 6.4075 3.7680 2.8223 0.111E-02 0.249E-02 0.00 0.00 1.00 1.00 0.0000 7.9000 4.6200 3.2760 0.164E-10 0.370E-10 0.00 0.00 1.00 1.00