The ANSS event ID is ak0139sm5zgh and the event page is at https://earthquake.usgs.gov/earthquakes/eventpage/ak0139sm5zgh/executive.
2013/08/01 21:32:47 60.142 -152.916 127.6 4.8 Alaska
USGS/SLU Moment Tensor Solution ENS 2013/08/01 21:32:47:0 60.14 -152.92 127.6 4.8 Alaska Stations used: AK.BPAW AK.BRLK AK.CAST AK.CNP AK.DHY AK.FID AK.GLI AK.HIN AK.KNK AK.KTH AK.PPLA AK.RC01 AK.RND AK.SCM AK.SKN AK.SSN AK.SWD AT.OHAK AT.PMR AT.SVW2 II.KDAK Filtering commands used: cut a -30 a 120 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.06 n 3 Best Fitting Double Couple Mo = 2.07e+23 dyne-cm Mw = 4.81 Z = 130 km Plane Strike Dip Rake NP1 307 69 148 NP2 50 60 25 Principal Axes: Axis Value Plunge Azimuth T 2.07e+23 38 266 N 0.00e+00 52 97 P -2.07e+23 5 0 Moment Tensor: (dyne-cm) Component Value Mxx -2.04e+23 Mxy 9.07e+21 Mxz -2.67e+22 Myy 1.28e+23 Myz -9.98e+22 Mzz 7.56e+22 ------ P ----- ---------- --------- ---------------------------- ------------------------------ #####----------------------------# ###########-----------------------## ################------------------#### ####################--------------###### #######################----------####### ##########################-------######### ####### ##################----########## ####### T ####################-########### ####### ###################---########## ##########################-------####### ########################----------###### #####################-------------#### #################-----------------## ###########----------------------# ------------------------------ ---------------------------- ---------------------- -------------- Global CMT Convention Moment Tensor: R T P 7.56e+22 -2.67e+22 9.98e+22 -2.67e+22 -2.04e+23 -9.07e+21 9.98e+22 -9.07e+21 1.28e+23 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20130801213247/index.html |
STK = 50 DIP = 60 RAKE = 25 MW = 4.81 HS = 130.0
The NDK file is 20130801213247.ndk The waveform inversion is preferred.
Given the availability of digital waveforms for determination of the moment tensor, this section documents the added processing leading to mLg, if appropriate to the region, and ML by application of the respective IASPEI formulae. As a research study, the linear distance term of the IASPEI formula for ML is adjusted to remove a linear distance trend in residuals to give a regionally defined ML. The defined ML uses horizontal component recordings, but the same procedure is applied to the vertical components since there may be some interest in vertical component ground motions. Residual plots versus distance may indicate interesting features of ground motion scaling in some distance ranges. A residual plot of the regionalized magnitude is given as a function of distance and azimuth, since data sets may transcend different wave propagation provinces.
Left: ML computed using the IASPEI formula for Horizontal components. Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
Left: ML computed using the IASPEI formula for Vertical components (research). Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
![]() |
The focal mechanism was determined using broadband seismic waveforms. The location of the event (star) and the stations used for (red) the waveform inversion are shown in the next figure.
![]() |
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green's functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
cut a -30 a 120 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.06 n 3The results of this grid search are as follow:
DEPTH STK DIP RAKE MW FIT WVFGRD96 0.5 115 65 -35 3.86 0.2111 WVFGRD96 1.0 115 65 -35 3.89 0.2239 WVFGRD96 2.0 300 65 -25 3.97 0.2919 WVFGRD96 3.0 305 65 -15 4.00 0.3152 WVFGRD96 4.0 305 75 -5 4.01 0.3344 WVFGRD96 5.0 305 75 -5 4.04 0.3491 WVFGRD96 6.0 305 75 0 4.06 0.3603 WVFGRD96 7.0 305 80 15 4.09 0.3716 WVFGRD96 8.0 310 75 20 4.12 0.3810 WVFGRD96 9.0 310 75 20 4.14 0.3869 WVFGRD96 10.0 40 80 15 4.15 0.3923 WVFGRD96 11.0 40 75 15 4.17 0.4038 WVFGRD96 12.0 40 75 15 4.19 0.4141 WVFGRD96 13.0 40 75 15 4.20 0.4229 WVFGRD96 14.0 40 80 15 4.21 0.4304 WVFGRD96 15.0 40 80 15 4.23 0.4378 WVFGRD96 16.0 40 80 10 4.24 0.4453 WVFGRD96 17.0 40 80 10 4.25 0.4521 WVFGRD96 18.0 40 80 10 4.27 0.4584 WVFGRD96 19.0 40 80 10 4.28 0.4640 WVFGRD96 20.0 40 80 10 4.29 0.4702 WVFGRD96 21.0 40 80 10 4.30 0.4755 WVFGRD96 22.0 40 80 10 4.31 0.4802 WVFGRD96 23.0 40 80 10 4.32 0.4845 WVFGRD96 24.0 40 80 10 4.33 0.4886 WVFGRD96 25.0 40 80 10 4.34 0.4930 WVFGRD96 26.0 40 80 10 4.35 0.4967 WVFGRD96 27.0 40 80 10 4.36 0.4994 WVFGRD96 28.0 40 80 10 4.37 0.5020 WVFGRD96 29.0 40 80 10 4.38 0.5049 WVFGRD96 30.0 40 80 10 4.39 0.5072 WVFGRD96 31.0 40 80 10 4.40 0.5097 WVFGRD96 32.0 40 80 10 4.41 0.5112 WVFGRD96 33.0 40 80 10 4.42 0.5128 WVFGRD96 34.0 40 80 10 4.43 0.5142 WVFGRD96 35.0 40 80 10 4.45 0.5148 WVFGRD96 36.0 40 85 5 4.46 0.5168 WVFGRD96 37.0 40 85 5 4.48 0.5204 WVFGRD96 38.0 40 85 5 4.49 0.5259 WVFGRD96 39.0 40 85 5 4.51 0.5326 WVFGRD96 40.0 220 85 -10 4.54 0.5391 WVFGRD96 41.0 40 85 5 4.55 0.5415 WVFGRD96 42.0 40 90 5 4.56 0.5435 WVFGRD96 43.0 45 85 5 4.57 0.5453 WVFGRD96 44.0 220 90 -10 4.57 0.5469 WVFGRD96 45.0 45 85 5 4.59 0.5493 WVFGRD96 46.0 45 85 5 4.60 0.5512 WVFGRD96 47.0 220 90 -10 4.60 0.5523 WVFGRD96 48.0 40 85 10 4.60 0.5551 WVFGRD96 49.0 40 85 10 4.61 0.5572 WVFGRD96 50.0 40 85 10 4.61 0.5594 WVFGRD96 51.0 45 80 5 4.63 0.5616 WVFGRD96 52.0 45 80 5 4.63 0.5653 WVFGRD96 53.0 45 80 5 4.64 0.5695 WVFGRD96 54.0 45 80 5 4.65 0.5737 WVFGRD96 55.0 45 80 5 4.65 0.5777 WVFGRD96 56.0 45 75 5 4.65 0.5816 WVFGRD96 57.0 45 75 5 4.66 0.5862 WVFGRD96 58.0 45 75 5 4.66 0.5915 WVFGRD96 59.0 45 75 5 4.67 0.5967 WVFGRD96 60.0 45 75 5 4.67 0.6016 WVFGRD96 61.0 45 75 10 4.67 0.6060 WVFGRD96 62.0 45 75 10 4.68 0.6111 WVFGRD96 63.0 45 75 10 4.68 0.6162 WVFGRD96 64.0 45 75 10 4.69 0.6220 WVFGRD96 65.0 45 75 10 4.69 0.6277 WVFGRD96 66.0 45 75 10 4.69 0.6326 WVFGRD96 67.0 45 75 10 4.70 0.6367 WVFGRD96 68.0 45 75 10 4.70 0.6417 WVFGRD96 69.0 45 75 10 4.70 0.6468 WVFGRD96 70.0 45 75 10 4.71 0.6508 WVFGRD96 71.0 50 70 10 4.72 0.6547 WVFGRD96 72.0 50 70 10 4.72 0.6609 WVFGRD96 73.0 50 70 10 4.72 0.6658 WVFGRD96 74.0 50 70 10 4.73 0.6691 WVFGRD96 75.0 50 70 10 4.73 0.6743 WVFGRD96 76.0 50 70 10 4.73 0.6787 WVFGRD96 77.0 50 70 10 4.74 0.6813 WVFGRD96 78.0 50 70 10 4.74 0.6857 WVFGRD96 79.0 50 70 10 4.74 0.6892 WVFGRD96 80.0 50 70 15 4.74 0.6916 WVFGRD96 81.0 50 70 15 4.74 0.6965 WVFGRD96 82.0 50 70 15 4.75 0.6994 WVFGRD96 83.0 50 70 15 4.75 0.7021 WVFGRD96 84.0 50 65 15 4.75 0.7060 WVFGRD96 85.0 50 65 15 4.75 0.7077 WVFGRD96 86.0 50 65 15 4.75 0.7121 WVFGRD96 87.0 50 65 15 4.75 0.7146 WVFGRD96 88.0 50 65 15 4.75 0.7169 WVFGRD96 89.0 50 65 15 4.75 0.7199 WVFGRD96 90.0 50 65 15 4.76 0.7217 WVFGRD96 91.0 50 65 15 4.76 0.7250 WVFGRD96 92.0 50 65 20 4.76 0.7261 WVFGRD96 93.0 50 65 20 4.76 0.7294 WVFGRD96 94.0 50 65 20 4.76 0.7315 WVFGRD96 95.0 50 65 20 4.76 0.7344 WVFGRD96 96.0 50 65 20 4.77 0.7364 WVFGRD96 97.0 50 65 20 4.77 0.7385 WVFGRD96 98.0 50 65 20 4.77 0.7407 WVFGRD96 99.0 50 65 20 4.77 0.7429 WVFGRD96 100.0 50 65 20 4.77 0.7443 WVFGRD96 101.0 50 65 20 4.77 0.7464 WVFGRD96 102.0 50 65 20 4.77 0.7478 WVFGRD96 103.0 50 65 20 4.78 0.7495 WVFGRD96 104.0 50 65 20 4.78 0.7506 WVFGRD96 105.0 50 65 25 4.78 0.7528 WVFGRD96 106.0 50 65 25 4.78 0.7536 WVFGRD96 107.0 50 65 25 4.78 0.7558 WVFGRD96 108.0 50 65 25 4.78 0.7567 WVFGRD96 109.0 50 65 25 4.79 0.7586 WVFGRD96 110.0 50 65 25 4.79 0.7589 WVFGRD96 111.0 50 65 25 4.79 0.7614 WVFGRD96 112.0 50 60 25 4.78 0.7613 WVFGRD96 113.0 50 60 25 4.78 0.7634 WVFGRD96 114.0 50 60 25 4.79 0.7643 WVFGRD96 115.0 50 60 25 4.79 0.7650 WVFGRD96 116.0 50 60 25 4.79 0.7666 WVFGRD96 117.0 50 60 25 4.79 0.7666 WVFGRD96 118.0 50 60 25 4.79 0.7684 WVFGRD96 119.0 50 60 25 4.79 0.7677 WVFGRD96 120.0 50 60 25 4.79 0.7694 WVFGRD96 121.0 50 60 25 4.80 0.7697 WVFGRD96 122.0 50 60 25 4.80 0.7702 WVFGRD96 123.0 50 60 25 4.80 0.7711 WVFGRD96 124.0 50 60 25 4.80 0.7703 WVFGRD96 125.0 50 60 25 4.80 0.7718 WVFGRD96 126.0 50 60 25 4.80 0.7709 WVFGRD96 127.0 50 60 25 4.80 0.7716 WVFGRD96 128.0 50 60 25 4.80 0.7720 WVFGRD96 129.0 50 60 25 4.81 0.7713 WVFGRD96 130.0 50 60 25 4.81 0.7721 WVFGRD96 131.0 50 60 25 4.81 0.7709 WVFGRD96 132.0 50 60 25 4.81 0.7713 WVFGRD96 133.0 50 60 30 4.81 0.7716 WVFGRD96 134.0 50 60 30 4.81 0.7702 WVFGRD96 135.0 50 60 30 4.81 0.7716 WVFGRD96 136.0 50 60 30 4.81 0.7702 WVFGRD96 137.0 50 60 30 4.82 0.7706 WVFGRD96 138.0 50 60 30 4.82 0.7707 WVFGRD96 139.0 50 60 30 4.82 0.7688
The best solution is
WVFGRD96 130.0 50 60 25 4.81 0.7721
The mechanism corresponding to the best fit is
![]() |
|
The best fit as a function of depth is given in the following figure:
![]() |
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed, the velocity model used in the predictions may not be perfect and the epicentral parameters may be be off. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
cut a -30 a 120 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.06 n 3
![]() |
Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated. The time scale is relative to the first trace sample. |
![]() |
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to the waveforms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
The WUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows (The format is in the model96 format of Computer Programs in Seismology).
MODEL.01 Model after 8 iterations ISOTROPIC KGS FLAT EARTH 1-D CONSTANT VELOCITY LINE08 LINE09 LINE10 LINE11 H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS 1.9000 3.4065 2.0089 2.2150 0.302E-02 0.679E-02 0.00 0.00 1.00 1.00 6.1000 5.5445 3.2953 2.6089 0.349E-02 0.784E-02 0.00 0.00 1.00 1.00 13.0000 6.2708 3.7396 2.7812 0.212E-02 0.476E-02 0.00 0.00 1.00 1.00 19.0000 6.4075 3.7680 2.8223 0.111E-02 0.249E-02 0.00 0.00 1.00 1.00 0.0000 7.9000 4.6200 3.2760 0.164E-10 0.370E-10 0.00 0.00 1.00 1.00