Location

Location ANSS

The ANSS event ID is ak0139iodhbh and the event page is at https://earthquake.usgs.gov/earthquakes/eventpage/ak0139iodhbh/executive.

2013/07/26 20:37:19 58.016 -151.750 40.3 4.7 Alaska

Focal Mechanism

 USGS/SLU Moment Tensor Solution
 ENS  2013/07/26 20:37:19:0  58.02 -151.75  40.3 4.7 Alaska
 
 Stations used:
   AK.BRLK AK.CHI AK.CNP AK.FID AK.GHO AK.GLI AK.HIN AK.HOM 
   AK.KNK AK.RC01 AK.SII AK.SKN AK.SSN AK.SWD AT.CHGN AT.OHAK 
   AT.PMR AT.SVW2 II.KDAK 
 
 Filtering commands used:
   cut a -30 a 180
   rtr
   taper w 0.1
   hp c 0.02 n 3 
   lp c 0.06 n 3 
 
 Best Fitting Double Couple
  Mo = 7.59e+22 dyne-cm
  Mw = 4.52 
  Z  = 40 km
  Plane   Strike  Dip  Rake
   NP1      220    50   -90
   NP2       40    40   -90
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   7.59e+22      5     310
    N   0.00e+00     -0     220
    P  -7.59e+22     85     130

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx     3.09e+22
       Mxy    -3.68e+22
       Mxz     8.47e+21
       Myy     4.38e+22
       Myz    -1.01e+22
       Mzz    -7.47e+22
                                                     
                                                     
                                                     
                                                     
                     ##############                  
                 ######################              
              #####################------#           
              ################------------#          
            T ############-----------------##        
          #   ##########-------------------###       
         #############---------------------####      
        ############-----------------------#####     
        ###########------------------------#####     
       ###########-------------------------######    
       ##########-----------   -----------#######    
       #########------------ P -----------#######    
       ########-------------   ----------########    
        ######--------------------------########     
        ######-------------------------#########     
         #####-----------------------##########      
          ####---------------------###########       
           ###-------------------############        
             #----------------#############          
              #-----------################           
                 ######################              
                     ##############                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
 -7.47e+22   8.47e+21   1.01e+22 
  8.47e+21   3.09e+22   3.68e+22 
  1.01e+22   3.68e+22   4.38e+22 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20130726203719/index.html
        

Preferred Solution

The preferred solution from an analysis of the surface-wave spectral amplitude radiation pattern, waveform inversion or first motion observations is

      STK = 40
      DIP = 40
     RAKE = -90
       MW = 4.52
       HS = 40.0

The NDK file is 20130726203719.ndk The waveform inversion is preferred.

Moment Tensor Comparison

The following compares this source inversion to those provided by others. The purpose is to look for major differences and also to note slight differences that might be inherent to the processing procedure. For completeness the USGS/SLU solution is repeated from above.
SLU
USGSMT
 USGS/SLU Moment Tensor Solution
 ENS  2013/07/26 20:37:19:0  58.02 -151.75  40.3 4.7 Alaska
 
 Stations used:
   AK.BRLK AK.CHI AK.CNP AK.FID AK.GHO AK.GLI AK.HIN AK.HOM 
   AK.KNK AK.RC01 AK.SII AK.SKN AK.SSN AK.SWD AT.CHGN AT.OHAK 
   AT.PMR AT.SVW2 II.KDAK 
 
 Filtering commands used:
   cut a -30 a 180
   rtr
   taper w 0.1
   hp c 0.02 n 3 
   lp c 0.06 n 3 
 
 Best Fitting Double Couple
  Mo = 7.59e+22 dyne-cm
  Mw = 4.52 
  Z  = 40 km
  Plane   Strike  Dip  Rake
   NP1      220    50   -90
   NP2       40    40   -90
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   7.59e+22      5     310
    N   0.00e+00     -0     220
    P  -7.59e+22     85     130

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx     3.09e+22
       Mxy    -3.68e+22
       Mxz     8.47e+21
       Myy     4.38e+22
       Myz    -1.01e+22
       Mzz    -7.47e+22
                                                     
                                                     
                                                     
                                                     
                     ##############                  
                 ######################              
              #####################------#           
              ################------------#          
            T ############-----------------##        
          #   ##########-------------------###       
         #############---------------------####      
        ############-----------------------#####     
        ###########------------------------#####     
       ###########-------------------------######    
       ##########-----------   -----------#######    
       #########------------ P -----------#######    
       ########-------------   ----------########    
        ######--------------------------########     
        ######-------------------------#########     
         #####-----------------------##########      
          ####---------------------###########       
           ###-------------------############        
             #----------------#############          
              #-----------################           
                 ######################              
                     ##############                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
 -7.47e+22   8.47e+21   1.01e+22 
  8.47e+21   3.09e+22   3.68e+22 
  1.01e+22   3.68e+22   4.38e+22 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20130726203719/index.html
	
USGS/SLU Regional Moment Solution

13/07/26 20:37:19.00

Epicenter:  58.024 -151.745
MW 4.6

USGS/SLU REGIONAL MOMENT TENSOR
Depth  40         No. of sta: 30
Moment Tensor;   Scale 10**15 Nm
  Mrr=-7.74       Mtt= 2.11
  Mpp= 5.63       Mrt=-1.46
  Mrp=-0.62       Mtp= 4.58
 Principal axes:
  T  Val=  8.89  Plg= 5  Azm=125
  N       -0.94       7      215
  P       -7.96      82        1

Best Double Couple:Mo=8.5*10**15
 NP1:Strike= 41 Dip=50 Slip= -81
 NP2:       207     41      -101


        

Magnitudes

Given the availability of digital waveforms for determination of the moment tensor, this section documents the added processing leading to mLg, if appropriate to the region, and ML by application of the respective IASPEI formulae. As a research study, the linear distance term of the IASPEI formula for ML is adjusted to remove a linear distance trend in residuals to give a regionally defined ML. The defined ML uses horizontal component recordings, but the same procedure is applied to the vertical components since there may be some interest in vertical component ground motions. Residual plots versus distance may indicate interesting features of ground motion scaling in some distance ranges. A residual plot of the regionalized magnitude is given as a function of distance and azimuth, since data sets may transcend different wave propagation provinces.

ML Magnitude


Left: ML computed using the IASPEI formula for Horizontal components. Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot. Right: Residuals from new relation as a function of distance and azimuth.


Left: ML computed using the IASPEI formula for Vertical components (research). Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot. Right: Residuals from new relation as a function of distance and azimuth.

Context

The left panel of the next figure presents the focal mechanism for this earthquake (red) in the context of other nearby events (blue) in the SLU Moment Tensor Catalog. The right panel shows the inferred direction of maximum compressive stress and the type of faulting (green is strike-slip, red is normal, blue is thrust; oblique is shown by a combination of colors). Thus context plot is useful for assessing the appropriateness of the moment tensor of this event.

Waveform Inversion using wvfgrd96

The focal mechanism was determined using broadband seismic waveforms. The location of the event (star) and the stations used for (red) the waveform inversion are shown in the next figure.
Location of broadband stations used for waveform inversion

The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green's functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.

The observed and predicted traces are filtered using the following gsac commands:

cut a -30 a 180
rtr
taper w 0.1
hp c 0.02 n 3 
lp c 0.06 n 3 
The results of this grid search are as follow:

           DEPTH  STK   DIP  RAKE   MW    FIT
WVFGRD96    1.0   115    45    85   3.75 0.2859
WVFGRD96    2.0    75    45    85   3.95 0.3658
WVFGRD96    3.0   255    45    85   4.03 0.3897
WVFGRD96    4.0   215    85     5   3.96 0.3739
WVFGRD96    5.0   215    85     0   3.99 0.3818
WVFGRD96    6.0    35    90     0   4.01 0.3819
WVFGRD96    7.0    30    75   -20   4.04 0.3907
WVFGRD96    8.0    30    70   -25   4.08 0.4042
WVFGRD96    9.0    30    70   -25   4.09 0.4078
WVFGRD96   10.0    30    70   -20   4.09 0.4083
WVFGRD96   11.0    30    65   -20   4.10 0.4092
WVFGRD96   12.0    75    75   -40   4.06 0.4212
WVFGRD96   13.0    70    70   -40   4.08 0.4392
WVFGRD96   14.0    70    65   -40   4.09 0.4557
WVFGRD96   15.0    70    65   -40   4.10 0.4716
WVFGRD96   16.0    70    65   -40   4.11 0.4867
WVFGRD96   17.0    70    65   -40   4.12 0.5006
WVFGRD96   18.0    70    65   -40   4.13 0.5164
WVFGRD96   19.0    70    65   -40   4.14 0.5320
WVFGRD96   20.0    35    30   -90   4.22 0.5534
WVFGRD96   21.0    35    30   -90   4.24 0.5732
WVFGRD96   22.0   215    60   -90   4.24 0.5921
WVFGRD96   23.0    40    35   -85   4.25 0.6106
WVFGRD96   24.0    40    35   -85   4.25 0.6275
WVFGRD96   25.0    40    35   -85   4.26 0.6430
WVFGRD96   26.0    40    35   -85   4.27 0.6570
WVFGRD96   27.0    40    35   -85   4.28 0.6693
WVFGRD96   28.0    40    35   -85   4.29 0.6802
WVFGRD96   29.0    45    40   -80   4.29 0.6905
WVFGRD96   30.0    50    40   -75   4.29 0.7000
WVFGRD96   31.0    50    40   -75   4.30 0.7090
WVFGRD96   32.0    50    40   -75   4.31 0.7159
WVFGRD96   33.0    45    40   -80   4.32 0.7199
WVFGRD96   34.0    45    40   -80   4.33 0.7224
WVFGRD96   35.0    45    40   -80   4.34 0.7228
WVFGRD96   36.0    45    40   -80   4.35 0.7205
WVFGRD96   37.0    45    40   -80   4.36 0.7159
WVFGRD96   38.0    50    45   -80   4.37 0.7113
WVFGRD96   39.0    45    45   -80   4.38 0.7064
WVFGRD96   40.0    40    40   -90   4.52 0.7422
WVFGRD96   41.0    40    40   -90   4.52 0.7395
WVFGRD96   42.0   220    45   -95   4.52 0.7339
WVFGRD96   43.0   220    45   -95   4.53 0.7272
WVFGRD96   44.0   225    45   -90   4.54 0.7186
WVFGRD96   45.0    45    45   -90   4.54 0.7087
WVFGRD96   46.0   220    45   -90   4.55 0.6979
WVFGRD96   47.0    40    45   -90   4.55 0.6860
WVFGRD96   48.0    45    50   -90   4.55 0.6733
WVFGRD96   49.0    45    50   -90   4.56 0.6608
WVFGRD96   50.0    45    50   -90   4.56 0.6484
WVFGRD96   51.0    45    50   -90   4.56 0.6353
WVFGRD96   52.0   225    40   -90   4.56 0.6212
WVFGRD96   53.0   225    40   -90   4.56 0.6075
WVFGRD96   54.0    45    50   -90   4.56 0.5929
WVFGRD96   55.0    45    50   -90   4.56 0.5792
WVFGRD96   56.0   225    40   -90   4.56 0.5650
WVFGRD96   57.0    45    50   -90   4.56 0.5517
WVFGRD96   58.0    45    50   -90   4.55 0.5381
WVFGRD96   59.0    45    50   -90   4.55 0.5254

The best solution is

WVFGRD96   40.0    40    40   -90   4.52 0.7422

The mechanism corresponding to the best fit is
Figure 1. Waveform inversion focal mechanism

The best fit as a function of depth is given in the following figure:

Figure 2. Depth sensitivity for waveform mechanism

The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed, the velocity model used in the predictions may not be perfect and the epicentral parameters may be be off. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).

The bandpass filter used in the processing and for the display was

cut a -30 a 180
rtr
taper w 0.1
hp c 0.02 n 3 
lp c 0.06 n 3 
Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated. The time scale is relative to the first trace sample.

Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to the waveforms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure.

A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:

Assuming only a mislocation, the time shifts are fit to a functional form:

 Time_shift = A + B cos Azimuth + C Sin Azimuth

The time shifts for this inversion lead to the next figure:

The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.

Velocity Model

The WUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows (The format is in the model96 format of Computer Programs in Seismology).

MODEL.01
Model after     8 iterations
ISOTROPIC
KGS
FLAT EARTH
1-D
CONSTANT VELOCITY
LINE08
LINE09
LINE10
LINE11
      H(KM)   VP(KM/S)   VS(KM/S) RHO(GM/CC)         QP         QS       ETAP       ETAS      FREFP      FREFS
     1.9000     3.4065     2.0089     2.2150  0.302E-02  0.679E-02   0.00       0.00       1.00       1.00    
     6.1000     5.5445     3.2953     2.6089  0.349E-02  0.784E-02   0.00       0.00       1.00       1.00    
    13.0000     6.2708     3.7396     2.7812  0.212E-02  0.476E-02   0.00       0.00       1.00       1.00    
    19.0000     6.4075     3.7680     2.8223  0.111E-02  0.249E-02   0.00       0.00       1.00       1.00    
     0.0000     7.9000     4.6200     3.2760  0.164E-10  0.370E-10   0.00       0.00       1.00       1.00    
Last Changed Fri Apr 26 07:11:44 PM CDT 2024