The ANSS event ID is ak0139fbzi66 and the event page is at https://earthquake.usgs.gov/earthquakes/eventpage/ak0139fbzi66/executive.
2013/07/24 18:16:59 62.922 -148.713 11.1 3.8 Alaska
USGS/SLU Moment Tensor Solution ENS 2013/07/24 18:16:59:0 62.92 -148.71 11.1 3.8 Alaska Stations used: AK.BPAW AK.BWN AK.CAST AK.CCB AK.CRQ AK.DHY AK.DOT AK.FID AK.FYU AK.GLI AK.HDA AK.HIN AK.HMT AK.KNK AK.KTH AK.MCK AK.MLY AK.PAX AK.PPD AK.PPLA AK.RAG AK.RC01 AK.RIDG AK.SAW AK.SCM AK.SCRK AK.SKN AK.SSN AK.TGL AK.WAX AK.WRH AT.MENT AT.PMR AT.SVW2 CN.DAWY IU.COLA US.EGAK Filtering commands used: cut a -30 a 160 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.10 n 3 Best Fitting Double Couple Mo = 4.03e+21 dyne-cm Mw = 3.67 Z = 16 km Plane Strike Dip Rake NP1 205 70 80 NP2 52 22 116 Principal Axes: Axis Value Plunge Azimuth T 4.03e+21 64 99 N 0.00e+00 9 208 P -4.03e+21 24 303 Moment Tensor: (dyne-cm) Component Value Mxx -9.59e+20 Mxy 1.40e+21 Mxz -1.07e+21 Myy -1.59e+21 Myz 2.85e+21 Mzz 2.55e+21 -------------- ------------------#### -------------------######### ------------------############ ------------------################ --- ------------#################- ---- P -----------###################- ----- ----------####################-- -----------------#####################-- -----------------######################--- ----------------########## ##########--- ---------------########### T ##########--- --------------############ #########---- -------------########################--- ------------########################---- -----------######################----- ---------######################----- --------####################------ ------##################------ ##---##############--------- ##-------------------- -------------- Global CMT Convention Moment Tensor: R T P 2.55e+21 -1.07e+21 -2.85e+21 -1.07e+21 -9.59e+20 -1.40e+21 -2.85e+21 -1.40e+21 -1.59e+21 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20130724181659/index.html |
STK = 205 DIP = 70 RAKE = 80 MW = 3.67 HS = 16.0
The NDK file is 20130724181659.ndk The waveform inversion is preferred.
The following compares this source inversion to those provided by others. The purpose is to look for major differences and also to note slight differences that might be inherent to the processing procedure. For completeness the USGS/SLU solution is repeated from above.
USGS/SLU Moment Tensor Solution ENS 2013/07/24 18:16:59:0 62.92 -148.71 11.1 3.8 Alaska Stations used: AK.BPAW AK.BWN AK.CAST AK.CCB AK.CRQ AK.DHY AK.DOT AK.FID AK.FYU AK.GLI AK.HDA AK.HIN AK.HMT AK.KNK AK.KTH AK.MCK AK.MLY AK.PAX AK.PPD AK.PPLA AK.RAG AK.RC01 AK.RIDG AK.SAW AK.SCM AK.SCRK AK.SKN AK.SSN AK.TGL AK.WAX AK.WRH AT.MENT AT.PMR AT.SVW2 CN.DAWY IU.COLA US.EGAK Filtering commands used: cut a -30 a 160 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.10 n 3 Best Fitting Double Couple Mo = 4.03e+21 dyne-cm Mw = 3.67 Z = 16 km Plane Strike Dip Rake NP1 205 70 80 NP2 52 22 116 Principal Axes: Axis Value Plunge Azimuth T 4.03e+21 64 99 N 0.00e+00 9 208 P -4.03e+21 24 303 Moment Tensor: (dyne-cm) Component Value Mxx -9.59e+20 Mxy 1.40e+21 Mxz -1.07e+21 Myy -1.59e+21 Myz 2.85e+21 Mzz 2.55e+21 -------------- ------------------#### -------------------######### ------------------############ ------------------################ --- ------------#################- ---- P -----------###################- ----- ----------####################-- -----------------#####################-- -----------------######################--- ----------------########## ##########--- ---------------########### T ##########--- --------------############ #########---- -------------########################--- ------------########################---- -----------######################----- ---------######################----- --------####################------ ------##################------ ##---##############--------- ##-------------------- -------------- Global CMT Convention Moment Tensor: R T P 2.55e+21 -1.07e+21 -2.85e+21 -1.07e+21 -9.59e+20 -1.40e+21 -2.85e+21 -1.40e+21 -1.59e+21 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20130724181659/index.html |
us ak10766225-neic-mwr Type Mwr Moment 3.91e+14 N-m Magnitude 3.7 Percent DC 83% Depth 15.0 km Author neic Updated 2013-07-24 19:09:42 UTC Principal Axes Axis Value Plunge Azimuth T 3.747 67 98 N 0.314 8 208 P -4.061 21 301 Nodal Planes Plane Strike Dip Rake NP1 204 67 81 NP2 46 25 110 |
Given the availability of digital waveforms for determination of the moment tensor, this section documents the added processing leading to mLg, if appropriate to the region, and ML by application of the respective IASPEI formulae. As a research study, the linear distance term of the IASPEI formula for ML is adjusted to remove a linear distance trend in residuals to give a regionally defined ML. The defined ML uses horizontal component recordings, but the same procedure is applied to the vertical components since there may be some interest in vertical component ground motions. Residual plots versus distance may indicate interesting features of ground motion scaling in some distance ranges. A residual plot of the regionalized magnitude is given as a function of distance and azimuth, since data sets may transcend different wave propagation provinces.
Left: ML computed using the IASPEI formula for Horizontal components. Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
Left: ML computed using the IASPEI formula for Vertical components (research). Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
![]() |
The focal mechanism was determined using broadband seismic waveforms. The location of the event (star) and the stations used for (red) the waveform inversion are shown in the next figure.
![]() |
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green's functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
cut a -30 a 160 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.10 n 3The results of this grid search are as follow:
DEPTH STK DIP RAKE MW FIT WVFGRD96 0.5 210 45 90 3.21 0.3015 WVFGRD96 1.0 300 90 5 3.18 0.2610 WVFGRD96 2.0 40 45 -90 3.36 0.3142 WVFGRD96 3.0 115 70 -10 3.36 0.2636 WVFGRD96 4.0 130 15 10 3.42 0.3102 WVFGRD96 5.0 90 5 -30 3.44 0.3812 WVFGRD96 6.0 90 10 -30 3.45 0.4352 WVFGRD96 7.0 55 10 -65 3.45 0.4744 WVFGRD96 8.0 45 10 -75 3.54 0.5001 WVFGRD96 9.0 45 15 -75 3.56 0.5267 WVFGRD96 10.0 50 20 -70 3.58 0.5440 WVFGRD96 11.0 50 20 -70 3.59 0.5554 WVFGRD96 12.0 50 20 -70 3.60 0.5597 WVFGRD96 13.0 50 20 -70 3.61 0.5577 WVFGRD96 14.0 205 70 80 3.64 0.5697 WVFGRD96 15.0 205 70 80 3.65 0.5765 WVFGRD96 16.0 205 70 80 3.67 0.5786 WVFGRD96 17.0 205 70 80 3.68 0.5761 WVFGRD96 18.0 205 70 80 3.69 0.5696 WVFGRD96 19.0 205 75 80 3.70 0.5606 WVFGRD96 20.0 45 20 110 3.71 0.5492 WVFGRD96 21.0 45 15 110 3.73 0.5362 WVFGRD96 22.0 205 75 85 3.74 0.5214 WVFGRD96 23.0 205 75 85 3.75 0.5049 WVFGRD96 24.0 205 75 85 3.75 0.4870 WVFGRD96 25.0 205 75 85 3.76 0.4677 WVFGRD96 26.0 205 75 85 3.77 0.4476 WVFGRD96 27.0 205 75 85 3.77 0.4270 WVFGRD96 28.0 200 75 80 3.78 0.4059 WVFGRD96 29.0 200 75 80 3.79 0.3865
The best solution is
WVFGRD96 16.0 205 70 80 3.67 0.5786
The mechanism corresponding to the best fit is
![]() |
|
The best fit as a function of depth is given in the following figure:
![]() |
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed, the velocity model used in the predictions may not be perfect and the epicentral parameters may be be off. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
cut a -30 a 160 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.10 n 3
![]() |
Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated. The time scale is relative to the first trace sample. |
![]() |
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to the waveforms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
The WUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows (The format is in the model96 format of Computer Programs in Seismology).
MODEL.01 Model after 8 iterations ISOTROPIC KGS FLAT EARTH 1-D CONSTANT VELOCITY LINE08 LINE09 LINE10 LINE11 H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS 1.9000 3.4065 2.0089 2.2150 0.302E-02 0.679E-02 0.00 0.00 1.00 1.00 6.1000 5.5445 3.2953 2.6089 0.349E-02 0.784E-02 0.00 0.00 1.00 1.00 13.0000 6.2708 3.7396 2.7812 0.212E-02 0.476E-02 0.00 0.00 1.00 1.00 19.0000 6.4075 3.7680 2.8223 0.111E-02 0.249E-02 0.00 0.00 1.00 1.00 0.0000 7.9000 4.6200 3.2760 0.164E-10 0.370E-10 0.00 0.00 1.00 1.00