Location

Location ANSS

The ANSS event ID is ak0138gmedul and the event page is at https://earthquake.usgs.gov/earthquakes/eventpage/ak0138gmedul/executive.

2013/07/03 19:34:01 62.160 -149.500 49.9 3.8 Alaska

Focal Mechanism

 USGS/SLU Moment Tensor Solution
 ENS  2013/07/03 19:34:01:0  62.16 -149.50  49.9 3.8 Alaska
 
 Stations used:
   AK.CAST AK.DHY AK.DOT AK.GLI AK.HIN AK.KNK AK.KTH AK.MCK 
   AK.PPLA AK.RC01 AK.RIDG AK.SCM AK.TRF AK.WAT1 AK.WAT2 
   AK.WAT3 AK.WAT4 AT.PMR IU.COLA 
 
 Filtering commands used:
   cut a -10 a 110
   rtr
   taper w 0.1
   hp c 0.02 n 3 
   lp c 0.10 n 3 
 
 Best Fitting Double Couple
  Mo = 7.24e+21 dyne-cm
  Mw = 3.84 
  Z  = 60 km
  Plane   Strike  Dip  Rake
   NP1      205    65   -45
   NP2      318    50   -147
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   7.24e+21      9     265
    N   0.00e+00     40       2
    P  -7.24e+21     49     164

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx    -2.86e+21
       Mxy     1.48e+21
       Mxz     3.35e+21
       Myy     6.78e+21
       Myz    -2.07e+21
       Mzz    -3.92e+21
                                                     
                                                     
                                                     
                                                     
                     --------------                  
                 -----------------#####              
              ------------------##########           
             #############----#############          
           #################-################        
          #################-----##############       
         ################---------#############      
        ################------------############     
        ###############--------------###########     
       ###############----------------###########    
          ###########-------------------#########    
        T ###########-------------------#########    
          ##########---------------------########    
        ############----------------------######     
        ###########-----------------------######     
         ##########----------   -----------####      
          #########---------- P -----------###       
           #######-----------   -----------##        
             #####------------------------#          
              #####-----------------------           
                 ##--------------------              
                     --------------                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
 -3.92e+21   3.35e+21   2.07e+21 
  3.35e+21  -2.86e+21  -1.48e+21 
  2.07e+21  -1.48e+21   6.78e+21 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20130703193401/index.html
        

Preferred Solution

The preferred solution from an analysis of the surface-wave spectral amplitude radiation pattern, waveform inversion or first motion observations is

      STK = 205
      DIP = 65
     RAKE = -45
       MW = 3.84
       HS = 60.0

The NDK file is 20130703193401.ndk The waveform inversion is preferred.

Magnitudes

Given the availability of digital waveforms for determination of the moment tensor, this section documents the added processing leading to mLg, if appropriate to the region, and ML by application of the respective IASPEI formulae. As a research study, the linear distance term of the IASPEI formula for ML is adjusted to remove a linear distance trend in residuals to give a regionally defined ML. The defined ML uses horizontal component recordings, but the same procedure is applied to the vertical components since there may be some interest in vertical component ground motions. Residual plots versus distance may indicate interesting features of ground motion scaling in some distance ranges. A residual plot of the regionalized magnitude is given as a function of distance and azimuth, since data sets may transcend different wave propagation provinces.

ML Magnitude


Left: ML computed using the IASPEI formula for Horizontal components. Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot. Right: Residuals from new relation as a function of distance and azimuth.


Left: ML computed using the IASPEI formula for Vertical components (research). Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot. Right: Residuals from new relation as a function of distance and azimuth.

Context

The left panel of the next figure presents the focal mechanism for this earthquake (red) in the context of other nearby events (blue) in the SLU Moment Tensor Catalog. The right panel shows the inferred direction of maximum compressive stress and the type of faulting (green is strike-slip, red is normal, blue is thrust; oblique is shown by a combination of colors). Thus context plot is useful for assessing the appropriateness of the moment tensor of this event.

Waveform Inversion using wvfgrd96

The focal mechanism was determined using broadband seismic waveforms. The location of the event (star) and the stations used for (red) the waveform inversion are shown in the next figure.
Location of broadband stations used for waveform inversion

The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green's functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.

The observed and predicted traces are filtered using the following gsac commands:

cut a -10 a 110
rtr
taper w 0.1
hp c 0.02 n 3 
lp c 0.10 n 3 
The results of this grid search are as follow:

           DEPTH  STK   DIP  RAKE   MW    FIT
WVFGRD96    0.5    90    45   -85   2.81 0.1773
WVFGRD96    1.0   105    45   -65   2.84 0.1481
WVFGRD96    2.0    95    45   -80   3.00 0.1988
WVFGRD96    3.0   285    70     5   3.00 0.1760
WVFGRD96    4.0   320    65    30   3.09 0.2024
WVFGRD96    5.0   320    65    30   3.12 0.2391
WVFGRD96    6.0   320    65    30   3.15 0.2686
WVFGRD96    7.0   320    65    30   3.17 0.2905
WVFGRD96    8.0   320    65    30   3.24 0.3093
WVFGRD96    9.0   320    65    30   3.26 0.3215
WVFGRD96   10.0   320    65    30   3.27 0.3275
WVFGRD96   11.0   320    60    30   3.28 0.3299
WVFGRD96   12.0   320    60    30   3.30 0.3308
WVFGRD96   13.0   320    60    30   3.31 0.3335
WVFGRD96   14.0   320    60    30   3.32 0.3340
WVFGRD96   15.0   320    60    30   3.34 0.3324
WVFGRD96   16.0   320    60    30   3.35 0.3288
WVFGRD96   17.0   320    60    30   3.36 0.3237
WVFGRD96   18.0   320    60    30   3.37 0.3159
WVFGRD96   19.0   320    60    30   3.38 0.3081
WVFGRD96   20.0   320    60    30   3.39 0.2982
WVFGRD96   21.0   325    60    35   3.40 0.2845
WVFGRD96   22.0   325    55    35   3.40 0.2724
WVFGRD96   23.0    90    40    15   3.39 0.2627
WVFGRD96   24.0    95    35    20   3.40 0.2599
WVFGRD96   25.0    50    65    20   3.43 0.2559
WVFGRD96   26.0    50    65    20   3.44 0.2524
WVFGRD96   27.0   220    75   -25   3.48 0.2535
WVFGRD96   28.0   220    75   -25   3.49 0.2577
WVFGRD96   29.0   220    70   -30   3.49 0.2595
WVFGRD96   30.0   220    65   -30   3.49 0.2697
WVFGRD96   31.0   220    65   -30   3.51 0.2903
WVFGRD96   32.0   220    70   -30   3.53 0.3087
WVFGRD96   33.0   215    65   -35   3.54 0.3261
WVFGRD96   34.0   215    65   -35   3.55 0.3433
WVFGRD96   35.0   215    70   -35   3.57 0.3575
WVFGRD96   36.0   215    70   -35   3.58 0.3680
WVFGRD96   37.0   215    70   -35   3.59 0.3780
WVFGRD96   38.0   215    70   -35   3.60 0.3856
WVFGRD96   39.0   215    65   -35   3.61 0.3915
WVFGRD96   40.0   210    65   -40   3.71 0.3978
WVFGRD96   41.0   210    65   -45   3.72 0.4108
WVFGRD96   42.0   210    65   -45   3.73 0.4218
WVFGRD96   43.0   210    65   -45   3.74 0.4304
WVFGRD96   44.0   210    65   -45   3.75 0.4370
WVFGRD96   45.0   210    65   -45   3.76 0.4432
WVFGRD96   46.0   210    65   -45   3.76 0.4489
WVFGRD96   47.0   210    65   -45   3.77 0.4537
WVFGRD96   48.0   210    65   -45   3.78 0.4575
WVFGRD96   49.0   210    65   -45   3.78 0.4616
WVFGRD96   50.0   205    65   -45   3.80 0.4642
WVFGRD96   51.0   205    65   -45   3.80 0.4669
WVFGRD96   52.0   205    65   -45   3.81 0.4697
WVFGRD96   53.0   205    65   -45   3.81 0.4724
WVFGRD96   54.0   205    65   -45   3.82 0.4746
WVFGRD96   55.0   205    65   -45   3.82 0.4765
WVFGRD96   56.0   205    65   -45   3.83 0.4773
WVFGRD96   57.0   205    65   -45   3.83 0.4788
WVFGRD96   58.0   205    65   -45   3.84 0.4791
WVFGRD96   59.0   205    65   -45   3.84 0.4787
WVFGRD96   60.0   205    65   -45   3.84 0.4793
WVFGRD96   61.0   205    65   -45   3.85 0.4779
WVFGRD96   62.0   205    65   -45   3.85 0.4774
WVFGRD96   63.0   205    70   -45   3.86 0.4763
WVFGRD96   64.0   205    70   -45   3.86 0.4763
WVFGRD96   65.0   205    70   -45   3.87 0.4766
WVFGRD96   66.0   205    70   -45   3.87 0.4762
WVFGRD96   67.0   205    70   -40   3.88 0.4740
WVFGRD96   68.0   205    70   -40   3.88 0.4739
WVFGRD96   69.0   205    70   -40   3.88 0.4733
WVFGRD96   70.0   205    70   -40   3.89 0.4715
WVFGRD96   71.0   205    70   -40   3.89 0.4694
WVFGRD96   72.0   205    70   -40   3.89 0.4682
WVFGRD96   73.0   205    70   -40   3.90 0.4661
WVFGRD96   74.0   205    70   -40   3.90 0.4637
WVFGRD96   75.0   205    70   -40   3.90 0.4610
WVFGRD96   76.0   205    70   -40   3.91 0.4585
WVFGRD96   77.0   205    70   -40   3.91 0.4557
WVFGRD96   78.0   205    70   -40   3.91 0.4525
WVFGRD96   79.0   205    70   -40   3.91 0.4493

The best solution is

WVFGRD96   60.0   205    65   -45   3.84 0.4793

The mechanism corresponding to the best fit is
Figure 1. Waveform inversion focal mechanism

The best fit as a function of depth is given in the following figure:

Figure 2. Depth sensitivity for waveform mechanism

The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed, the velocity model used in the predictions may not be perfect and the epicentral parameters may be be off. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).

The bandpass filter used in the processing and for the display was

cut a -10 a 110
rtr
taper w 0.1
hp c 0.02 n 3 
lp c 0.10 n 3 
Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated. The time scale is relative to the first trace sample.

Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to the waveforms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure.

A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:

Assuming only a mislocation, the time shifts are fit to a functional form:

 Time_shift = A + B cos Azimuth + C Sin Azimuth

The time shifts for this inversion lead to the next figure:

The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.

Velocity Model

The WUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows (The format is in the model96 format of Computer Programs in Seismology).

MODEL.01
Model after     8 iterations
ISOTROPIC
KGS
FLAT EARTH
1-D
CONSTANT VELOCITY
LINE08
LINE09
LINE10
LINE11
      H(KM)   VP(KM/S)   VS(KM/S) RHO(GM/CC)         QP         QS       ETAP       ETAS      FREFP      FREFS
     1.9000     3.4065     2.0089     2.2150  0.302E-02  0.679E-02   0.00       0.00       1.00       1.00    
     6.1000     5.5445     3.2953     2.6089  0.349E-02  0.784E-02   0.00       0.00       1.00       1.00    
    13.0000     6.2708     3.7396     2.7812  0.212E-02  0.476E-02   0.00       0.00       1.00       1.00    
    19.0000     6.4075     3.7680     2.8223  0.111E-02  0.249E-02   0.00       0.00       1.00       1.00    
     0.0000     7.9000     4.6200     3.2760  0.164E-10  0.370E-10   0.00       0.00       1.00       1.00    
Last Changed Fri Apr 26 06:25:33 PM CDT 2024