Location

Location ANSS

The ANSS event ID is ak0137t9n76d and the event page is at https://earthquake.usgs.gov/earthquakes/eventpage/ak0137t9n76d/executive.

2013/06/19 07:19:43 61.440 -149.835 48.6 4.3 Alaska

Focal Mechanism

 USGS/SLU Moment Tensor Solution
 ENS  2013/06/19 07:19:43:0  61.44 -149.84  48.6 4.3 Alaska
 
 Stations used:
   AK.DIV AK.GHO AK.GLI AK.HIN AK.KNK AK.RC01 AK.SAW AK.SCM 
   AT.PMR 
 
 Filtering commands used:
   hp c 0.02 n 3
   lp c 0.10 n 3
 
 Best Fitting Double Couple
  Mo = 1.60e+22 dyne-cm
  Mw = 4.07 
  Z  = 46 km
  Plane   Strike  Dip  Rake
   NP1      215    50   -70
   NP2        5    44   -112
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   1.60e+22      3     291
    N   0.00e+00     15      22
    P  -1.60e+22     74     190

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx     9.34e+20
       Mxy    -5.53e+21
       Mxz     4.39e+21
       Myy     1.39e+22
       Myz    -1.21e+20
       Mzz    -1.48e+22
                                                     
                                                     
                                                     
                                                     
                     ###########---                  
                 #################-----              
              ##################---#######           
             ###############--------#######          
           ###############-----------########        
           #############--------------########       
         T ###########-----------------########      
           #########-------------------#########     
        ###########--------------------#########     
       ###########----------------------#########    
       ##########-----------------------#########    
       #########----------   ----------##########    
       #########---------- P ----------##########    
        #######-----------   ----------#########     
        #######-----------------------##########     
         ######-----------------------#########      
          #####----------------------#########       
           ####---------------------#########        
             ##--------------------########          
              ##-----------------#########           
                 --------------########              
                     --------######                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
 -1.48e+22   4.39e+21   1.21e+20 
  4.39e+21   9.34e+20   5.53e+21 
  1.21e+20   5.53e+21   1.39e+22 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20130619071943/index.html
        

Preferred Solution

The preferred solution from an analysis of the surface-wave spectral amplitude radiation pattern, waveform inversion or first motion observations is

      STK = 215
      DIP = 50
     RAKE = -70
       MW = 4.07
       HS = 46.0

The NDK file is 20130619071943.ndk The waveform inversion is preferred.

Moment Tensor Comparison

The following compares this source inversion to those provided by others. The purpose is to look for major differences and also to note slight differences that might be inherent to the processing procedure. For completeness the USGS/SLU solution is repeated from above.

        
SLU
USGSMT
 USGS/SLU Moment Tensor Solution
 ENS  2013/06/19 07:19:43:0  61.44 -149.84  48.6 4.3 Alaska
 
 Stations used:
   AK.DIV AK.GHO AK.GLI AK.HIN AK.KNK AK.RC01 AK.SAW AK.SCM 
   AT.PMR 
 
 Filtering commands used:
   hp c 0.02 n 3
   lp c 0.10 n 3
 
 Best Fitting Double Couple
  Mo = 1.60e+22 dyne-cm
  Mw = 4.07 
  Z  = 46 km
  Plane   Strike  Dip  Rake
   NP1      215    50   -70
   NP2        5    44   -112
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   1.60e+22      3     291
    N   0.00e+00     15      22
    P  -1.60e+22     74     190

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx     9.34e+20
       Mxy    -5.53e+21
       Mxz     4.39e+21
       Myy     1.39e+22
       Myz    -1.21e+20
       Mzz    -1.48e+22
                                                     
                                                     
                                                     
                                                     
                     ###########---                  
                 #################-----              
              ##################---#######           
             ###############--------#######          
           ###############-----------########        
           #############--------------########       
         T ###########-----------------########      
           #########-------------------#########     
        ###########--------------------#########     
       ###########----------------------#########    
       ##########-----------------------#########    
       #########----------   ----------##########    
       #########---------- P ----------##########    
        #######-----------   ----------#########     
        #######-----------------------##########     
         ######-----------------------#########      
          #####----------------------#########       
           ####---------------------#########        
             ##--------------------########          
              ##-----------------#########           
                 --------------########              
                     --------######                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
 -1.48e+22   4.39e+21   1.21e+20 
  4.39e+21   9.34e+20   5.53e+21 
  1.21e+20   5.53e+21   1.39e+22 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20130619071943/index.html
	
    USGS/SLU Regional Moment Tensor Solution

Moment Tensor
Moment Tensor EQXML
Contributed Solutions
Moment Tensor
Contributed Moment Tensors
 	Contributor	Code	Type	Magnitude	Depth	NP1	NP2
	us	usc000hutt-neic-mwr	Mwr	4.1	51.0 km	210, 54, -65	352, 43, -120
us usc000hutt-neic-mwr

Type
    Mwr
Moment
    1.84e+15 N-m
Magnitude
    4.1
Percent DC
    98%
Depth
    51.0 km
Author
    neic
Updated
    2013-06-19 07:58:46 UTC

Principal Axes
Axis	Value	Plunge	Azimuth
T	1.833	6	282
N	0.013	20	15
P	-1.846	69	177
Nodal Planes
Plane	Strike	Dip	Rake
NP1	210	54	-65
NP2	352	43	-120

Magnitudes

Given the availability of digital waveforms for determination of the moment tensor, this section documents the added processing leading to mLg, if appropriate to the region, and ML by application of the respective IASPEI formulae. As a research study, the linear distance term of the IASPEI formula for ML is adjusted to remove a linear distance trend in residuals to give a regionally defined ML. The defined ML uses horizontal component recordings, but the same procedure is applied to the vertical components since there may be some interest in vertical component ground motions. Residual plots versus distance may indicate interesting features of ground motion scaling in some distance ranges. A residual plot of the regionalized magnitude is given as a function of distance and azimuth, since data sets may transcend different wave propagation provinces.

ML Magnitude


Left: ML computed using the IASPEI formula for Horizontal components. Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot. Right: Residuals from new relation as a function of distance and azimuth.


Left: ML computed using the IASPEI formula for Vertical components (research). Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot. Right: Residuals from new relation as a function of distance and azimuth.

Context

The left panel of the next figure presents the focal mechanism for this earthquake (red) in the context of other nearby events (blue) in the SLU Moment Tensor Catalog. The right panel shows the inferred direction of maximum compressive stress and the type of faulting (green is strike-slip, red is normal, blue is thrust; oblique is shown by a combination of colors). Thus context plot is useful for assessing the appropriateness of the moment tensor of this event.

Waveform Inversion using wvfgrd96

The focal mechanism was determined using broadband seismic waveforms. The location of the event (star) and the stations used for (red) the waveform inversion are shown in the next figure.
Location of broadband stations used for waveform inversion

The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green's functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.

The observed and predicted traces are filtered using the following gsac commands:

hp c 0.02 n 3
lp c 0.10 n 3
The results of this grid search are as follow:

           DEPTH  STK   DIP  RAKE   MW    FIT
WVFGRD96    0.5   195    50    90   3.22 0.2439
WVFGRD96    1.0   125    90     5   3.24 0.2408
WVFGRD96    2.0   130    75    25   3.39 0.3017
WVFGRD96    3.0   125    90    15   3.47 0.3182
WVFGRD96    4.0   120    65   -30   3.51 0.3249
WVFGRD96    5.0   120    65   -30   3.54 0.3408
WVFGRD96    6.0   125    70   -25   3.55 0.3476
WVFGRD96    7.0   340    70    40   3.49 0.3484
WVFGRD96    8.0   120    70   -20   3.66 0.3595
WVFGRD96    9.0   125    80   -20   3.67 0.3581
WVFGRD96   10.0   310    80    30   3.66 0.3554
WVFGRD96   11.0   310    80    30   3.68 0.3549
WVFGRD96   12.0    65    60   -35   3.63 0.3629
WVFGRD96   13.0    65    60   -30   3.64 0.3688
WVFGRD96   14.0   245    60   -30   3.66 0.3755
WVFGRD96   15.0   245    60   -30   3.68 0.3830
WVFGRD96   16.0   245    60   -30   3.69 0.3889
WVFGRD96   17.0   245    60   -30   3.71 0.3934
WVFGRD96   18.0   245    65   -30   3.72 0.3962
WVFGRD96   19.0   245    65   -30   3.74 0.3999
WVFGRD96   20.0   245    65   -30   3.75 0.4031
WVFGRD96   21.0   245    65   -30   3.76 0.4058
WVFGRD96   22.0   245    65   -30   3.77 0.4088
WVFGRD96   23.0   245    65   -25   3.77 0.4126
WVFGRD96   24.0   245    65   -30   3.79 0.4152
WVFGRD96   25.0   245    60     5   3.79 0.4253
WVFGRD96   26.0   240    60     5   3.81 0.4363
WVFGRD96   27.0   240    60     5   3.82 0.4462
WVFGRD96   28.0   240    55     0   3.82 0.4572
WVFGRD96   29.0   240    55     0   3.83 0.4650
WVFGRD96   30.0   230    55   -25   3.84 0.4755
WVFGRD96   31.0   230    55   -30   3.85 0.4896
WVFGRD96   32.0   230    55   -30   3.85 0.5046
WVFGRD96   33.0   225    50   -55   3.87 0.5184
WVFGRD96   34.0   225    50   -55   3.88 0.5385
WVFGRD96   35.0   225    50   -55   3.88 0.5527
WVFGRD96   36.0   225    50   -60   3.90 0.5675
WVFGRD96   37.0   220    50   -60   3.90 0.5753
WVFGRD96   38.0   220    50   -65   3.92 0.5832
WVFGRD96   39.0   220    50   -65   3.93 0.5903
WVFGRD96   40.0   220    50   -65   4.01 0.5999
WVFGRD96   41.0   220    50   -65   4.02 0.6063
WVFGRD96   42.0   215    50   -70   4.04 0.6134
WVFGRD96   43.0   215    50   -70   4.05 0.6177
WVFGRD96   44.0   215    50   -70   4.06 0.6222
WVFGRD96   45.0   215    50   -70   4.06 0.6228
WVFGRD96   46.0   215    50   -70   4.07 0.6250
WVFGRD96   47.0   215    50   -70   4.07 0.6225
WVFGRD96   48.0   215    50   -70   4.08 0.6226
WVFGRD96   49.0   215    55   -70   4.08 0.6205
WVFGRD96   50.0   215    55   -70   4.09 0.6183
WVFGRD96   51.0   215    55   -70   4.09 0.6169
WVFGRD96   52.0   215    55   -70   4.09 0.6145
WVFGRD96   53.0   215    55   -70   4.09 0.6123
WVFGRD96   54.0   215    55   -70   4.09 0.6090
WVFGRD96   55.0   215    55   -75   4.10 0.6064
WVFGRD96   56.0   210    55   -75   4.11 0.6028
WVFGRD96   57.0   215    55   -75   4.11 0.6012
WVFGRD96   58.0   210    55   -80   4.12 0.5986
WVFGRD96   59.0   210    55   -80   4.12 0.5950

The best solution is

WVFGRD96   46.0   215    50   -70   4.07 0.6250

The mechanism corresponding to the best fit is
Figure 1. Waveform inversion focal mechanism

The best fit as a function of depth is given in the following figure:

Figure 2. Depth sensitivity for waveform mechanism

The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed, the velocity model used in the predictions may not be perfect and the epicentral parameters may be be off. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).

The bandpass filter used in the processing and for the display was

hp c 0.02 n 3
lp c 0.10 n 3
Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated. The time scale is relative to the first trace sample.

Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to the waveforms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure.

A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:

Assuming only a mislocation, the time shifts are fit to a functional form:

 Time_shift = A + B cos Azimuth + C Sin Azimuth

The time shifts for this inversion lead to the next figure:

The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.

Velocity Model

The WUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows (The format is in the model96 format of Computer Programs in Seismology).

MODEL.01
Model after     8 iterations
ISOTROPIC
KGS
FLAT EARTH
1-D
CONSTANT VELOCITY
LINE08
LINE09
LINE10
LINE11
      H(KM)   VP(KM/S)   VS(KM/S) RHO(GM/CC)         QP         QS       ETAP       ETAS      FREFP      FREFS
     1.9000     3.4065     2.0089     2.2150  0.302E-02  0.679E-02   0.00       0.00       1.00       1.00    
     6.1000     5.5445     3.2953     2.6089  0.349E-02  0.784E-02   0.00       0.00       1.00       1.00    
    13.0000     6.2708     3.7396     2.7812  0.212E-02  0.476E-02   0.00       0.00       1.00       1.00    
    19.0000     6.4075     3.7680     2.8223  0.111E-02  0.249E-02   0.00       0.00       1.00       1.00    
     0.0000     7.9000     4.6200     3.2760  0.164E-10  0.370E-10   0.00       0.00       1.00       1.00    
Last Changed Fri Apr 26 06:03:38 PM CDT 2024