The ANSS event ID is ak0137t9n76d and the event page is at https://earthquake.usgs.gov/earthquakes/eventpage/ak0137t9n76d/executive.
2013/06/19 07:19:43 61.440 -149.835 48.6 4.3 Alaska
USGS/SLU Moment Tensor Solution ENS 2013/06/19 07:19:43:0 61.44 -149.84 48.6 4.3 Alaska Stations used: AK.DIV AK.GHO AK.GLI AK.HIN AK.KNK AK.RC01 AK.SAW AK.SCM AT.PMR Filtering commands used: hp c 0.02 n 3 lp c 0.10 n 3 Best Fitting Double Couple Mo = 1.60e+22 dyne-cm Mw = 4.07 Z = 46 km Plane Strike Dip Rake NP1 215 50 -70 NP2 5 44 -112 Principal Axes: Axis Value Plunge Azimuth T 1.60e+22 3 291 N 0.00e+00 15 22 P -1.60e+22 74 190 Moment Tensor: (dyne-cm) Component Value Mxx 9.34e+20 Mxy -5.53e+21 Mxz 4.39e+21 Myy 1.39e+22 Myz -1.21e+20 Mzz -1.48e+22 ###########--- #################----- ##################---####### ###############--------####### ###############-----------######## #############--------------######## T ###########-----------------######## #########-------------------######### ###########--------------------######### ###########----------------------######### ##########-----------------------######### #########---------- ----------########## #########---------- P ----------########## #######----------- ----------######### #######-----------------------########## ######-----------------------######### #####----------------------######### ####---------------------######### ##--------------------######## ##-----------------######### --------------######## --------###### Global CMT Convention Moment Tensor: R T P -1.48e+22 4.39e+21 1.21e+20 4.39e+21 9.34e+20 5.53e+21 1.21e+20 5.53e+21 1.39e+22 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20130619071943/index.html |
STK = 215 DIP = 50 RAKE = -70 MW = 4.07 HS = 46.0
The NDK file is 20130619071943.ndk The waveform inversion is preferred.
The following compares this source inversion to those provided by others. The purpose is to look for major differences and also to note slight differences that might be inherent to the processing procedure. For completeness the USGS/SLU solution is repeated from above.
USGS/SLU Moment Tensor Solution ENS 2013/06/19 07:19:43:0 61.44 -149.84 48.6 4.3 Alaska Stations used: AK.DIV AK.GHO AK.GLI AK.HIN AK.KNK AK.RC01 AK.SAW AK.SCM AT.PMR Filtering commands used: hp c 0.02 n 3 lp c 0.10 n 3 Best Fitting Double Couple Mo = 1.60e+22 dyne-cm Mw = 4.07 Z = 46 km Plane Strike Dip Rake NP1 215 50 -70 NP2 5 44 -112 Principal Axes: Axis Value Plunge Azimuth T 1.60e+22 3 291 N 0.00e+00 15 22 P -1.60e+22 74 190 Moment Tensor: (dyne-cm) Component Value Mxx 9.34e+20 Mxy -5.53e+21 Mxz 4.39e+21 Myy 1.39e+22 Myz -1.21e+20 Mzz -1.48e+22 ###########--- #################----- ##################---####### ###############--------####### ###############-----------######## #############--------------######## T ###########-----------------######## #########-------------------######### ###########--------------------######### ###########----------------------######### ##########-----------------------######### #########---------- ----------########## #########---------- P ----------########## #######----------- ----------######### #######-----------------------########## ######-----------------------######### #####----------------------######### ####---------------------######### ##--------------------######## ##-----------------######### --------------######## --------###### Global CMT Convention Moment Tensor: R T P -1.48e+22 4.39e+21 1.21e+20 4.39e+21 9.34e+20 5.53e+21 1.21e+20 5.53e+21 1.39e+22 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20130619071943/index.html |
USGS/SLU Regional Moment Tensor Solution Moment Tensor Moment Tensor EQXML Contributed Solutions Moment Tensor Contributed Moment Tensors Contributor Code Type Magnitude Depth NP1 NP2 us usc000hutt-neic-mwr Mwr 4.1 51.0 km 210, 54, -65 352, 43, -120 us usc000hutt-neic-mwr Type Mwr Moment 1.84e+15 N-m Magnitude 4.1 Percent DC 98% Depth 51.0 km Author neic Updated 2013-06-19 07:58:46 UTC Principal Axes Axis Value Plunge Azimuth T 1.833 6 282 N 0.013 20 15 P -1.846 69 177 Nodal Planes Plane Strike Dip Rake NP1 210 54 -65 NP2 352 43 -120 |
![]() |
Given the availability of digital waveforms for determination of the moment tensor, this section documents the added processing leading to mLg, if appropriate to the region, and ML by application of the respective IASPEI formulae. As a research study, the linear distance term of the IASPEI formula for ML is adjusted to remove a linear distance trend in residuals to give a regionally defined ML. The defined ML uses horizontal component recordings, but the same procedure is applied to the vertical components since there may be some interest in vertical component ground motions. Residual plots versus distance may indicate interesting features of ground motion scaling in some distance ranges. A residual plot of the regionalized magnitude is given as a function of distance and azimuth, since data sets may transcend different wave propagation provinces.
Left: ML computed using the IASPEI formula for Horizontal components. Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
Left: ML computed using the IASPEI formula for Vertical components (research). Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
![]() |
The focal mechanism was determined using broadband seismic waveforms. The location of the event (star) and the stations used for (red) the waveform inversion are shown in the next figure.
![]() |
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green's functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
hp c 0.02 n 3 lp c 0.10 n 3The results of this grid search are as follow:
DEPTH STK DIP RAKE MW FIT WVFGRD96 0.5 195 50 90 3.22 0.2439 WVFGRD96 1.0 125 90 5 3.24 0.2408 WVFGRD96 2.0 130 75 25 3.39 0.3017 WVFGRD96 3.0 125 90 15 3.47 0.3182 WVFGRD96 4.0 120 65 -30 3.51 0.3249 WVFGRD96 5.0 120 65 -30 3.54 0.3408 WVFGRD96 6.0 125 70 -25 3.55 0.3476 WVFGRD96 7.0 340 70 40 3.49 0.3484 WVFGRD96 8.0 120 70 -20 3.66 0.3595 WVFGRD96 9.0 125 80 -20 3.67 0.3581 WVFGRD96 10.0 310 80 30 3.66 0.3554 WVFGRD96 11.0 310 80 30 3.68 0.3549 WVFGRD96 12.0 65 60 -35 3.63 0.3629 WVFGRD96 13.0 65 60 -30 3.64 0.3688 WVFGRD96 14.0 245 60 -30 3.66 0.3755 WVFGRD96 15.0 245 60 -30 3.68 0.3830 WVFGRD96 16.0 245 60 -30 3.69 0.3889 WVFGRD96 17.0 245 60 -30 3.71 0.3934 WVFGRD96 18.0 245 65 -30 3.72 0.3962 WVFGRD96 19.0 245 65 -30 3.74 0.3999 WVFGRD96 20.0 245 65 -30 3.75 0.4031 WVFGRD96 21.0 245 65 -30 3.76 0.4058 WVFGRD96 22.0 245 65 -30 3.77 0.4088 WVFGRD96 23.0 245 65 -25 3.77 0.4126 WVFGRD96 24.0 245 65 -30 3.79 0.4152 WVFGRD96 25.0 245 60 5 3.79 0.4253 WVFGRD96 26.0 240 60 5 3.81 0.4363 WVFGRD96 27.0 240 60 5 3.82 0.4462 WVFGRD96 28.0 240 55 0 3.82 0.4572 WVFGRD96 29.0 240 55 0 3.83 0.4650 WVFGRD96 30.0 230 55 -25 3.84 0.4755 WVFGRD96 31.0 230 55 -30 3.85 0.4896 WVFGRD96 32.0 230 55 -30 3.85 0.5046 WVFGRD96 33.0 225 50 -55 3.87 0.5184 WVFGRD96 34.0 225 50 -55 3.88 0.5385 WVFGRD96 35.0 225 50 -55 3.88 0.5527 WVFGRD96 36.0 225 50 -60 3.90 0.5675 WVFGRD96 37.0 220 50 -60 3.90 0.5753 WVFGRD96 38.0 220 50 -65 3.92 0.5832 WVFGRD96 39.0 220 50 -65 3.93 0.5903 WVFGRD96 40.0 220 50 -65 4.01 0.5999 WVFGRD96 41.0 220 50 -65 4.02 0.6063 WVFGRD96 42.0 215 50 -70 4.04 0.6134 WVFGRD96 43.0 215 50 -70 4.05 0.6177 WVFGRD96 44.0 215 50 -70 4.06 0.6222 WVFGRD96 45.0 215 50 -70 4.06 0.6228 WVFGRD96 46.0 215 50 -70 4.07 0.6250 WVFGRD96 47.0 215 50 -70 4.07 0.6225 WVFGRD96 48.0 215 50 -70 4.08 0.6226 WVFGRD96 49.0 215 55 -70 4.08 0.6205 WVFGRD96 50.0 215 55 -70 4.09 0.6183 WVFGRD96 51.0 215 55 -70 4.09 0.6169 WVFGRD96 52.0 215 55 -70 4.09 0.6145 WVFGRD96 53.0 215 55 -70 4.09 0.6123 WVFGRD96 54.0 215 55 -70 4.09 0.6090 WVFGRD96 55.0 215 55 -75 4.10 0.6064 WVFGRD96 56.0 210 55 -75 4.11 0.6028 WVFGRD96 57.0 215 55 -75 4.11 0.6012 WVFGRD96 58.0 210 55 -80 4.12 0.5986 WVFGRD96 59.0 210 55 -80 4.12 0.5950
The best solution is
WVFGRD96 46.0 215 50 -70 4.07 0.6250
The mechanism corresponding to the best fit is
![]() |
|
The best fit as a function of depth is given in the following figure:
![]() |
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed, the velocity model used in the predictions may not be perfect and the epicentral parameters may be be off. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
hp c 0.02 n 3 lp c 0.10 n 3
![]() |
Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated. The time scale is relative to the first trace sample. |
![]() |
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to the waveforms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
The WUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows (The format is in the model96 format of Computer Programs in Seismology).
MODEL.01 Model after 8 iterations ISOTROPIC KGS FLAT EARTH 1-D CONSTANT VELOCITY LINE08 LINE09 LINE10 LINE11 H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS 1.9000 3.4065 2.0089 2.2150 0.302E-02 0.679E-02 0.00 0.00 1.00 1.00 6.1000 5.5445 3.2953 2.6089 0.349E-02 0.784E-02 0.00 0.00 1.00 1.00 13.0000 6.2708 3.7396 2.7812 0.212E-02 0.476E-02 0.00 0.00 1.00 1.00 19.0000 6.4075 3.7680 2.8223 0.111E-02 0.249E-02 0.00 0.00 1.00 1.00 0.0000 7.9000 4.6200 3.2760 0.164E-10 0.370E-10 0.00 0.00 1.00 1.00