The ANSS event ID is ak0133b7hme1 and the event page is at https://earthquake.usgs.gov/earthquakes/eventpage/ak0133b7hme1/executive.
2013/03/13 08:05:44 62.556 -151.230 84.4 4.8 Alaska
USGS/SLU Moment Tensor Solution ENS 2013/03/13 08:05:44:0 62.56 -151.23 84.4 4.8 Alaska Stations used: AK.BPAW AK.BWN AK.CAST AK.CCB AK.DHY AK.DOT AK.EYAK AK.HDA AK.KLU AK.KNK AK.MCK AK.MDM AK.MLY AK.NEA AK.PAX AK.PPD AK.PPLA AK.RC01 AK.RIDG AK.RND AK.SAW AK.SCM AK.SCRK AK.SWD AK.TRF AK.WRH AT.PMR AT.SVW2 IU.COLA Filtering commands used: hp c 0.02 n 3 lp c 0.07 n 3 Best Fitting Double Couple Mo = 1.32e+23 dyne-cm Mw = 4.68 Z = 91 km Plane Strike Dip Rake NP1 60 60 55 NP2 294 45 135 Principal Axes: Axis Value Plunge Azimuth T 1.32e+23 59 278 N 0.00e+00 30 79 P -1.32e+23 9 174 Moment Tensor: (dyne-cm) Component Value Mxx -1.27e+23 Mxy 7.75e+21 Mxz 2.79e+22 Myy 3.33e+22 Myz -5.97e+22 Mzz 9.35e+22 -------------- ---------------------- ---------------------------- ------------------------------ -----############----------------- -######################------------- ###########################---------## ###############################------### #################################---#### ############ ####################-###### ############ T ###################---##### ############ #################------#### ##############################---------### ###########################-----------## ########################---------------# ###################------------------- #############----------------------- ---------------------------------- ------------------------------ ---------------------------- ----------- -------- ------- P ---- Global CMT Convention Moment Tensor: R T P 9.35e+22 2.79e+22 5.97e+22 2.79e+22 -1.27e+23 -7.75e+21 5.97e+22 -7.75e+21 3.33e+22 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20130313080544/index.html |
STK = 60 DIP = 60 RAKE = 55 MW = 4.68 HS = 91.0
The NDK file is 20130313080544.ndk The waveform inversion is preferred.
Given the availability of digital waveforms for determination of the moment tensor, this section documents the added processing leading to mLg, if appropriate to the region, and ML by application of the respective IASPEI formulae. As a research study, the linear distance term of the IASPEI formula for ML is adjusted to remove a linear distance trend in residuals to give a regionally defined ML. The defined ML uses horizontal component recordings, but the same procedure is applied to the vertical components since there may be some interest in vertical component ground motions. Residual plots versus distance may indicate interesting features of ground motion scaling in some distance ranges. A residual plot of the regionalized magnitude is given as a function of distance and azimuth, since data sets may transcend different wave propagation provinces.
Left: ML computed using the IASPEI formula for Horizontal components. Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
Left: ML computed using the IASPEI formula for Vertical components (research). Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
![]() |
The focal mechanism was determined using broadband seismic waveforms. The location of the event (star) and the stations used for (red) the waveform inversion are shown in the next figure.
![]() |
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green's functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
hp c 0.02 n 3 lp c 0.07 n 3The results of this grid search are as follow:
DEPTH STK DIP RAKE MW FIT WVFGRD96 0.5 85 45 -75 3.73 0.2132 WVFGRD96 1.0 85 45 -75 3.77 0.2086 WVFGRD96 2.0 85 50 -80 3.88 0.2457 WVFGRD96 3.0 85 45 -75 3.93 0.2374 WVFGRD96 4.0 95 45 -60 3.93 0.2109 WVFGRD96 5.0 95 45 -55 3.93 0.2003 WVFGRD96 6.0 30 70 -45 3.91 0.2028 WVFGRD96 7.0 25 65 -45 3.93 0.2205 WVFGRD96 8.0 30 70 -50 3.99 0.2286 WVFGRD96 9.0 25 65 -50 4.01 0.2414 WVFGRD96 10.0 30 65 -45 4.01 0.2512 WVFGRD96 11.0 245 65 65 4.04 0.2596 WVFGRD96 12.0 240 65 60 4.04 0.2686 WVFGRD96 13.0 240 65 60 4.05 0.2757 WVFGRD96 14.0 240 65 60 4.06 0.2807 WVFGRD96 15.0 240 65 55 4.07 0.2842 WVFGRD96 16.0 235 65 50 4.08 0.2871 WVFGRD96 17.0 235 65 50 4.09 0.2901 WVFGRD96 18.0 235 65 50 4.10 0.2916 WVFGRD96 19.0 230 70 45 4.11 0.2941 WVFGRD96 20.0 230 70 45 4.12 0.2964 WVFGRD96 21.0 230 70 45 4.13 0.2983 WVFGRD96 22.0 230 70 45 4.14 0.3002 WVFGRD96 23.0 230 70 45 4.15 0.2987 WVFGRD96 24.0 230 70 40 4.16 0.2993 WVFGRD96 25.0 225 70 40 4.17 0.3006 WVFGRD96 26.0 225 70 40 4.17 0.2981 WVFGRD96 27.0 225 70 40 4.18 0.2986 WVFGRD96 28.0 225 70 40 4.19 0.2988 WVFGRD96 29.0 225 65 40 4.20 0.2966 WVFGRD96 30.0 225 65 40 4.21 0.2973 WVFGRD96 31.0 220 65 35 4.22 0.2959 WVFGRD96 32.0 215 60 30 4.23 0.2984 WVFGRD96 33.0 215 60 30 4.24 0.3012 WVFGRD96 34.0 215 60 30 4.25 0.3020 WVFGRD96 35.0 215 60 30 4.26 0.3044 WVFGRD96 36.0 215 60 30 4.27 0.3056 WVFGRD96 37.0 50 75 30 4.30 0.3077 WVFGRD96 38.0 50 75 25 4.33 0.3104 WVFGRD96 39.0 50 75 25 4.34 0.3133 WVFGRD96 40.0 220 60 40 4.38 0.3225 WVFGRD96 41.0 220 60 40 4.39 0.3250 WVFGRD96 42.0 220 60 40 4.40 0.3283 WVFGRD96 43.0 220 60 40 4.41 0.3324 WVFGRD96 44.0 220 60 40 4.42 0.3360 WVFGRD96 45.0 220 60 40 4.43 0.3400 WVFGRD96 46.0 220 60 40 4.44 0.3433 WVFGRD96 47.0 220 60 40 4.45 0.3465 WVFGRD96 48.0 50 65 35 4.48 0.3532 WVFGRD96 49.0 50 65 35 4.49 0.3598 WVFGRD96 50.0 50 65 35 4.50 0.3678 WVFGRD96 51.0 50 65 35 4.51 0.3754 WVFGRD96 52.0 50 65 35 4.52 0.3838 WVFGRD96 53.0 50 65 35 4.53 0.3923 WVFGRD96 54.0 50 65 35 4.54 0.4009 WVFGRD96 55.0 50 55 45 4.55 0.4117 WVFGRD96 56.0 50 55 45 4.56 0.4270 WVFGRD96 57.0 50 55 45 4.57 0.4427 WVFGRD96 58.0 50 55 45 4.57 0.4581 WVFGRD96 59.0 50 55 45 4.58 0.4731 WVFGRD96 60.0 50 55 45 4.59 0.4881 WVFGRD96 61.0 55 55 50 4.60 0.5023 WVFGRD96 62.0 55 55 50 4.60 0.5174 WVFGRD96 63.0 55 55 50 4.61 0.5321 WVFGRD96 64.0 55 55 50 4.61 0.5452 WVFGRD96 65.0 55 55 50 4.62 0.5586 WVFGRD96 66.0 55 55 50 4.62 0.5709 WVFGRD96 67.0 55 55 50 4.63 0.5841 WVFGRD96 68.0 55 55 50 4.63 0.5951 WVFGRD96 69.0 55 55 50 4.64 0.6060 WVFGRD96 70.0 55 55 50 4.64 0.6168 WVFGRD96 71.0 60 55 55 4.64 0.6263 WVFGRD96 72.0 60 55 55 4.65 0.6362 WVFGRD96 73.0 60 55 55 4.65 0.6450 WVFGRD96 74.0 60 55 55 4.65 0.6534 WVFGRD96 75.0 60 55 55 4.66 0.6607 WVFGRD96 76.0 60 55 55 4.66 0.6682 WVFGRD96 77.0 60 55 55 4.66 0.6738 WVFGRD96 78.0 60 55 55 4.66 0.6799 WVFGRD96 79.0 60 55 55 4.66 0.6845 WVFGRD96 80.0 60 55 55 4.66 0.6889 WVFGRD96 81.0 60 60 55 4.67 0.6942 WVFGRD96 82.0 60 60 55 4.67 0.6982 WVFGRD96 83.0 60 60 55 4.67 0.7022 WVFGRD96 84.0 60 60 55 4.67 0.7053 WVFGRD96 85.0 60 60 55 4.67 0.7080 WVFGRD96 86.0 60 60 55 4.67 0.7102 WVFGRD96 87.0 60 60 55 4.68 0.7118 WVFGRD96 88.0 60 60 55 4.68 0.7132 WVFGRD96 89.0 60 60 55 4.68 0.7144 WVFGRD96 90.0 60 60 55 4.68 0.7141 WVFGRD96 91.0 60 60 55 4.68 0.7147 WVFGRD96 92.0 60 60 55 4.68 0.7142 WVFGRD96 93.0 60 60 55 4.68 0.7139 WVFGRD96 94.0 60 60 55 4.67 0.7125 WVFGRD96 95.0 60 60 55 4.67 0.7119 WVFGRD96 96.0 65 60 60 4.68 0.7103 WVFGRD96 97.0 65 60 60 4.68 0.7092 WVFGRD96 98.0 65 60 60 4.68 0.7076 WVFGRD96 99.0 65 60 60 4.68 0.7065
The best solution is
WVFGRD96 91.0 60 60 55 4.68 0.7147
The mechanism corresponding to the best fit is
![]() |
|
The best fit as a function of depth is given in the following figure:
![]() |
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed, the velocity model used in the predictions may not be perfect and the epicentral parameters may be be off. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
hp c 0.02 n 3 lp c 0.07 n 3
![]() |
Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated. The time scale is relative to the first trace sample. |
![]() |
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to the waveforms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
The WUS model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows (The format is in the model96 format of Computer Programs in Seismology).
MODEL.01 Model after 8 iterations ISOTROPIC KGS FLAT EARTH 1-D CONSTANT VELOCITY LINE08 LINE09 LINE10 LINE11 H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS 1.9000 3.4065 2.0089 2.2150 0.302E-02 0.679E-02 0.00 0.00 1.00 1.00 6.1000 5.5445 3.2953 2.6089 0.349E-02 0.784E-02 0.00 0.00 1.00 1.00 13.0000 6.2708 3.7396 2.7812 0.212E-02 0.476E-02 0.00 0.00 1.00 1.00 19.0000 6.4075 3.7680 2.8223 0.111E-02 0.249E-02 0.00 0.00 1.00 1.00 0.0000 7.9000 4.6200 3.2760 0.164E-10 0.370E-10 0.00 0.00 1.00 1.00