The ANSS event ID is nn00402779 and the event page is at https://earthquake.usgs.gov/earthquakes/eventpage/nn00402779/executive.
2013/02/13 02:59:09 38.033 -118.049 8.5 3.7 Nevada
USGS/SLU Moment Tensor Solution
ENS 2013/02/13 02:59:09:0 38.03 -118.05 8.5 3.7 Nevada
Stations used:
BK.WDC CI.GSC CI.ISA CI.LDF CI.OSI CI.PASC II.PFO LB.DAC
NC.MDPB NN.KVN NN.OMMB NN.PAH NN.PNT NN.RYN NN.VCN NN.WAK
NN.YER TA.R11A US.DUG US.ELK UU.BGU UU.MPU UU.NLU UU.PSUT
UU.SZCU UU.TCRU
Filtering commands used:
hp c 0.02 n 3
lp c 0.06 n 3
br c 0.12 0.25 n 4 p 2
Best Fitting Double Couple
Mo = 3.51e+21 dyne-cm
Mw = 3.63
Z = 10 km
Plane Strike Dip Rake
NP1 343 69 -148
NP2 240 60 -25
Principal Axes:
Axis Value Plunge Azimuth
T 3.51e+21 5 110
N 0.00e+00 52 13
P -3.51e+21 38 204
Moment Tensor: (dyne-cm)
Component Value
Mxx -1.42e+21
Mxy -1.93e+21
Mxz 1.44e+21
Myy 2.71e+21
Myz 1.01e+21
Mzz -1.28e+21
##------------
########--------------
############----------------
###############---------------
##################----------------
####################---#############
###################---################
################-------#################
#############-----------################
############--------------################
##########----------------################
########-------------------###############
######---------------------###############
####-----------------------##########
###------------------------########## T
##------------------------##########
----------- -----------###########
---------- P -----------##########
-------- -----------########
---------------------#######
------------------####
-------------#
Global CMT Convention Moment Tensor:
R T P
-1.28e+21 1.44e+21 -1.01e+21
1.44e+21 -1.42e+21 1.93e+21
-1.01e+21 1.93e+21 2.71e+21
Details of the solution is found at
http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20130213025909/index.html
|
STK = 240
DIP = 60
RAKE = -25
MW = 3.63
HS = 10.0
The NDK file is 20130213025909.ndk The waveform inversion is preferred.
The following compares this source inversion to those provided by others. The purpose is to look for major differences and also to note slight differences that might be inherent to the processing procedure. For completeness the USGS/SLU solution is repeated from above.
USGS/SLU Moment Tensor Solution
ENS 2013/02/13 02:59:09:0 38.03 -118.05 8.5 3.7 Nevada
Stations used:
BK.WDC CI.GSC CI.ISA CI.LDF CI.OSI CI.PASC II.PFO LB.DAC
NC.MDPB NN.KVN NN.OMMB NN.PAH NN.PNT NN.RYN NN.VCN NN.WAK
NN.YER TA.R11A US.DUG US.ELK UU.BGU UU.MPU UU.NLU UU.PSUT
UU.SZCU UU.TCRU
Filtering commands used:
hp c 0.02 n 3
lp c 0.06 n 3
br c 0.12 0.25 n 4 p 2
Best Fitting Double Couple
Mo = 3.51e+21 dyne-cm
Mw = 3.63
Z = 10 km
Plane Strike Dip Rake
NP1 343 69 -148
NP2 240 60 -25
Principal Axes:
Axis Value Plunge Azimuth
T 3.51e+21 5 110
N 0.00e+00 52 13
P -3.51e+21 38 204
Moment Tensor: (dyne-cm)
Component Value
Mxx -1.42e+21
Mxy -1.93e+21
Mxz 1.44e+21
Myy 2.71e+21
Myz 1.01e+21
Mzz -1.28e+21
##------------
########--------------
############----------------
###############---------------
##################----------------
####################---#############
###################---################
################-------#################
#############-----------################
############--------------################
##########----------------################
########-------------------###############
######---------------------###############
####-----------------------##########
###------------------------########## T
##------------------------##########
----------- -----------###########
---------- P -----------##########
-------- -----------########
---------------------#######
------------------####
-------------#
Global CMT Convention Moment Tensor:
R T P
-1.28e+21 1.44e+21 -1.01e+21
1.44e+21 -1.42e+21 1.93e+21
-1.01e+21 1.93e+21 2.71e+21
Details of the solution is found at
http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20130213025909/index.html
|
REVIEWED BY NSL STAFF
Event ID:402779
Origin ID:992163
Algorithm: Ichinose (2003) Long Period, Regional-Distance Waves
Seismic Moment Tensor Solution
2013/02/13 (044) 02:59:11.00 38.0265 -118.0342 992163
Depth = 6.0 (km)
Mw = 3.56
Mo = 2.68x10^21 (dyne x cm)
Percent Double Couple = 99 %
Percent CLVD = 1 %
no ISO calculated
Epsilon=-0.01
Percent Variance Reduction = 76.53 %
Total Fit = 36.58
Major Double Couple
strike dip rake
Nodal Plane 1: 244 71 -19
Nodal Plane 2: 340 72 -160
DEVIATORIC MOMENT TENSOR
Moment Tensor Elements: Spherical Coordinates
Mrr= -0.56 Mtt= -1.45 Mff= 2.02
Mrt= 0.99 Mrf= -0.43 Mtf= 1.66 EXP=21
Moment Tensor Elements: Cartesian Coordinates
-1.45 -1.66 0.99
-1.66 2.02 0.43
0.99 0.43 -0.56
Eigenvalues:
T-axis eigenvalue= 2.69
N-axis eigenvalue= -0.01
P-axis eigenvalue= -2.67
Eigenvalues and eigenvectors of the Major Double Couple:
T-axis ev= 2.69 trend=112 plunge=1
N-axis ev= 0.00 trend=20 plunge=63
P-axis ev=-2.69 trend=202 plunge=27
Maximum Azmuithal Gap=155 Distance to Nearest Station= 79.3 (km)
Number of Stations (D=Displacement/V=Velocity) Used=7 (defining only)
RYN.NN.D OMMB.NN.D KVN.NN.D GRA.CI.D
WAK.NN.D YER.NN.D PNT.NN.D
##---------------
########-----------------
############-----------------
###############------------------
#################------------------
###################------------------
-#####################---------##########
#######################-#################
###########################################
#####################---###################
##################-------###################
###############-----------##################
############--------------##################
#########------------------#################
########-------------------################
######----------------------########### #
###------------------------########### T
#--------------------------##########
---------------------------############
-------------------------###########
----- ----------------#########
--- P ----------------#######
- ----------------#####
---------------###
All Stations defining and nondefining:
Station.Net Def Distance Azi Bazi lo-f hi-f vmodel
(km) (deg) (deg) (Hz) (Hz)
RYN.NN (D) Y 79.3 328 148 0.020 0.080 RYN.NN.wus.glib
OMMB.NN (D) Y 96.6 242 61 0.020 0.080 OMMB.NN.wus.glib
KVN.NN (D) Y 113.9 357 177 0.020 0.080 KVN.NN.wus.glib
GRA.CI (D) Y 128.2 153 333 0.020 0.080 GRA.CI.wus.glib
WAK.NN (D) Y 133.4 294 113 0.020 0.080 WAK.NN.wus.glib
YER.NN (D) Y 149.8 316 135 0.020 0.080 YER.NN.wus.glib
PNT.NN (D) Y 180.2 311 130 0.020 0.080 PNT.NN.wus.glib
(V)-velocity (D)-Displacement
Author: www-data
Date: 2013/02/13 13:49:56
mtinv Version 2.1_DEVEL OCT2008
|
|
Given the availability of digital waveforms for determination of the moment tensor, this section documents the added processing leading to mLg, if appropriate to the region, and ML by application of the respective IASPEI formulae. As a research study, the linear distance term of the IASPEI formula for ML is adjusted to remove a linear distance trend in residuals to give a regionally defined ML. The defined ML uses horizontal component recordings, but the same procedure is applied to the vertical components since there may be some interest in vertical component ground motions. Residual plots versus distance may indicate interesting features of ground motion scaling in some distance ranges. A residual plot of the regionalized magnitude is given as a function of distance and azimuth, since data sets may transcend different wave propagation provinces.
Left: ML computed using the IASPEI formula for Horizontal components. Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
Left: ML computed using the IASPEI formula for Vertical components (research). Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
![]() |
The focal mechanism was determined using broadband seismic waveforms. The location of the event (star) and the stations used for (red) the waveform inversion are shown in the next figure.
|
|
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green's functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
hp c 0.02 n 3 lp c 0.06 n 3 br c 0.12 0.25 n 4 p 2The results of this grid search are as follow:
DEPTH STK DIP RAKE MW FIT
WVFGRD96 0.5 75 75 20 3.37 0.3865
WVFGRD96 1.0 250 90 0 3.37 0.4151
WVFGRD96 2.0 75 70 20 3.49 0.5202
WVFGRD96 3.0 250 60 5 3.51 0.5463
WVFGRD96 4.0 245 50 -5 3.56 0.5689
WVFGRD96 5.0 245 50 -5 3.57 0.5835
WVFGRD96 6.0 245 60 -15 3.57 0.5926
WVFGRD96 7.0 245 60 -15 3.58 0.5997
WVFGRD96 8.0 240 55 -25 3.62 0.6025
WVFGRD96 9.0 240 55 -25 3.63 0.6048
WVFGRD96 10.0 240 60 -25 3.63 0.6049
WVFGRD96 11.0 245 65 -20 3.63 0.6045
WVFGRD96 12.0 245 65 -15 3.63 0.6032
WVFGRD96 13.0 245 65 -15 3.64 0.6006
WVFGRD96 14.0 245 65 -15 3.65 0.5973
WVFGRD96 15.0 245 70 -15 3.65 0.5937
WVFGRD96 16.0 245 70 -10 3.66 0.5898
WVFGRD96 17.0 245 70 -10 3.67 0.5856
WVFGRD96 18.0 245 70 -10 3.67 0.5809
WVFGRD96 19.0 245 70 -10 3.68 0.5756
WVFGRD96 20.0 245 70 -10 3.69 0.5700
WVFGRD96 21.0 245 70 -10 3.70 0.5641
WVFGRD96 22.0 245 70 -10 3.70 0.5576
WVFGRD96 23.0 245 70 -10 3.71 0.5508
WVFGRD96 24.0 245 70 -10 3.72 0.5437
WVFGRD96 25.0 70 75 10 3.73 0.5355
WVFGRD96 26.0 70 75 10 3.73 0.5293
WVFGRD96 27.0 70 75 10 3.74 0.5228
WVFGRD96 28.0 70 75 10 3.75 0.5160
WVFGRD96 29.0 70 75 10 3.76 0.5089
The best solution is
WVFGRD96 10.0 240 60 -25 3.63 0.6049
The mechanism corresponding to the best fit is
|
|
|
The best fit as a function of depth is given in the following figure:
|
|
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed, the velocity model used in the predictions may not be perfect and the epicentral parameters may be be off. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
hp c 0.02 n 3 lp c 0.06 n 3 br c 0.12 0.25 n 4 p 2
|
| Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated. The time scale is relative to the first trace sample. |
|
| Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to the waveforms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
The WUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows (The format is in the model96 format of Computer Programs in Seismology).
MODEL.01
Model after 8 iterations
ISOTROPIC
KGS
FLAT EARTH
1-D
CONSTANT VELOCITY
LINE08
LINE09
LINE10
LINE11
H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS
1.9000 3.4065 2.0089 2.2150 0.302E-02 0.679E-02 0.00 0.00 1.00 1.00
6.1000 5.5445 3.2953 2.6089 0.349E-02 0.784E-02 0.00 0.00 1.00 1.00
13.0000 6.2708 3.7396 2.7812 0.212E-02 0.476E-02 0.00 0.00 1.00 1.00
19.0000 6.4075 3.7680 2.8223 0.111E-02 0.249E-02 0.00 0.00 1.00 1.00
0.0000 7.9000 4.6200 3.2760 0.164E-10 0.370E-10 0.00 0.00 1.00 1.00