Location

Location ANSS

The ANSS event ID is nn00402779 and the event page is at https://earthquake.usgs.gov/earthquakes/eventpage/nn00402779/executive.

2013/02/13 02:59:09 38.033 -118.049 8.5 3.7 Nevada

Focal Mechanism

 USGS/SLU Moment Tensor Solution
 ENS  2013/02/13 02:59:09:0  38.03 -118.05   8.5 3.7 Nevada
 
 Stations used:
   BK.WDC CI.GSC CI.ISA CI.LDF CI.OSI CI.PASC II.PFO LB.DAC 
   NC.MDPB NN.KVN NN.OMMB NN.PAH NN.PNT NN.RYN NN.VCN NN.WAK 
   NN.YER TA.R11A US.DUG US.ELK UU.BGU UU.MPU UU.NLU UU.PSUT 
   UU.SZCU UU.TCRU 
 
 Filtering commands used:
   hp c 0.02 n 3
   lp c 0.06 n 3
   br c 0.12 0.25 n 4 p 2
 
 Best Fitting Double Couple
  Mo = 3.51e+21 dyne-cm
  Mw = 3.63 
  Z  = 10 km
  Plane   Strike  Dip  Rake
   NP1      343    69   -148
   NP2      240    60   -25
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   3.51e+21      5     110
    N   0.00e+00     52      13
    P  -3.51e+21     38     204

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx    -1.42e+21
       Mxy    -1.93e+21
       Mxz     1.44e+21
       Myy     2.71e+21
       Myz     1.01e+21
       Mzz    -1.28e+21
                                                     
                                                     
                                                     
                                                     
                     ##------------                  
                 ########--------------              
              ############----------------           
             ###############---------------          
           ##################----------------        
          ####################---#############       
         ###################---################      
        ################-------#################     
        #############-----------################     
       ############--------------################    
       ##########----------------################    
       ########-------------------###############    
       ######---------------------###############    
        ####-----------------------##########        
        ###------------------------########## T      
         ##------------------------##########        
          -----------   -----------###########       
           ---------- P -----------##########        
             --------   -----------########          
              ---------------------#######           
                 ------------------####              
                     -------------#                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
 -1.28e+21   1.44e+21  -1.01e+21 
  1.44e+21  -1.42e+21   1.93e+21 
 -1.01e+21   1.93e+21   2.71e+21 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20130213025909/index.html
        

Preferred Solution

The preferred solution from an analysis of the surface-wave spectral amplitude radiation pattern, waveform inversion or first motion observations is

      STK = 240
      DIP = 60
     RAKE = -25
       MW = 3.63
       HS = 10.0

The NDK file is 20130213025909.ndk The waveform inversion is preferred.

Moment Tensor Comparison

The following compares this source inversion to those provided by others. The purpose is to look for major differences and also to note slight differences that might be inherent to the processing procedure. For completeness the USGS/SLU solution is repeated from above.
        
SLU
UNR
 USGS/SLU Moment Tensor Solution
 ENS  2013/02/13 02:59:09:0  38.03 -118.05   8.5 3.7 Nevada
 
 Stations used:
   BK.WDC CI.GSC CI.ISA CI.LDF CI.OSI CI.PASC II.PFO LB.DAC 
   NC.MDPB NN.KVN NN.OMMB NN.PAH NN.PNT NN.RYN NN.VCN NN.WAK 
   NN.YER TA.R11A US.DUG US.ELK UU.BGU UU.MPU UU.NLU UU.PSUT 
   UU.SZCU UU.TCRU 
 
 Filtering commands used:
   hp c 0.02 n 3
   lp c 0.06 n 3
   br c 0.12 0.25 n 4 p 2
 
 Best Fitting Double Couple
  Mo = 3.51e+21 dyne-cm
  Mw = 3.63 
  Z  = 10 km
  Plane   Strike  Dip  Rake
   NP1      343    69   -148
   NP2      240    60   -25
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   3.51e+21      5     110
    N   0.00e+00     52      13
    P  -3.51e+21     38     204

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx    -1.42e+21
       Mxy    -1.93e+21
       Mxz     1.44e+21
       Myy     2.71e+21
       Myz     1.01e+21
       Mzz    -1.28e+21
                                                     
                                                     
                                                     
                                                     
                     ##------------                  
                 ########--------------              
              ############----------------           
             ###############---------------          
           ##################----------------        
          ####################---#############       
         ###################---################      
        ################-------#################     
        #############-----------################     
       ############--------------################    
       ##########----------------################    
       ########-------------------###############    
       ######---------------------###############    
        ####-----------------------##########        
        ###------------------------########## T      
         ##------------------------##########        
          -----------   -----------###########       
           ---------- P -----------##########        
             --------   -----------########          
              ---------------------#######           
                 ------------------####              
                     -------------#                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
 -1.28e+21   1.44e+21  -1.01e+21 
  1.44e+21  -1.42e+21   1.93e+21 
 -1.01e+21   1.93e+21   2.71e+21 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20130213025909/index.html
	
REVIEWED BY NSL STAFF

Event ID:402779
Origin ID:992163
Algorithm: Ichinose (2003) Long Period, Regional-Distance Waves
Seismic Moment Tensor Solution

2013/02/13 (044) 02:59:11.00 38.0265 -118.0342 992163
	Depth =   6.0 (km)
	Mw    =  3.56
	Mo    =  2.68x10^21 (dyne x cm)

	Percent Double Couple =  99 %
	Percent CLVD          =   1 %
	no ISO calculated
	Epsilon=-0.01
	 Percent Variance Reduction =  76.53 %
	 Total Fit                  =  36.58 
	Major Double Couple
		            strike dip   rake
		Nodal Plane 1: 244  71  -19
		Nodal Plane 2: 340  72 -160

	DEVIATORIC MOMENT TENSOR

	Moment Tensor Elements: Spherical Coordinates
		Mrr= -0.56 Mtt= -1.45 Mff=  2.02
		Mrt=  0.99 Mrf= -0.43 Mtf=  1.66 EXP=21


	Moment Tensor Elements: Cartesian Coordinates
		-1.45 -1.66  0.99
		-1.66  2.02  0.43
		 0.99  0.43 -0.56

	Eigenvalues:
		T-axis eigenvalue=  2.69
		N-axis eigenvalue= -0.01
		P-axis eigenvalue= -2.67

	Eigenvalues and eigenvectors of the Major Double Couple:
		T-axis ev= 2.69 trend=112 plunge=1
		N-axis ev= 0.00 trend=20 plunge=63
		P-axis ev=-2.69 trend=202 plunge=27

	Maximum Azmuithal Gap=155 Distance to Nearest Station= 79.3 (km)

	Number of Stations (D=Displacement/V=Velocity) Used=7 (defining only)
		
	 RYN.NN.D OMMB.NN.D KVN.NN.D GRA.CI.D
	 WAK.NN.D YER.NN.D PNT.NN.D


              ##---------------                             
          ########-----------------                         
        ############-----------------                       
      ###############------------------                     
     #################------------------                    
    ###################------------------                   
  -#####################---------##########                 
  #######################-#################                 
 ###########################################                
 #####################---###################                
 ##################-------###################               
 ###############-----------##################               
 ############--------------##################               
 #########------------------#################               
 ########-------------------################                
 ######----------------------###########   #                
  ###------------------------########### T                  
   #--------------------------##########                    
   ---------------------------############                  
     -------------------------###########                   
      -----   ----------------#########                     
        --- P ----------------#######                       
          -   ----------------#####                         
              ---------------###                            
                                                            


All Stations defining and nondefining: 
Station.Net 	Def 	Distance 	Azi    	Bazi  	lo-f 	hi-f vmodel
            	    	(km)     	(deg)  	(deg) 	(Hz) 	(Hz)    
RYN.NN (D) 	Y 	    79.3  	328  	148  	0.020 	0.080 RYN.NN.wus.glib
OMMB.NN (D) 	Y 	    96.6  	242  	 61  	0.020 	0.080 OMMB.NN.wus.glib
KVN.NN (D) 	Y 	   113.9  	357  	177  	0.020 	0.080 KVN.NN.wus.glib
GRA.CI (D) 	Y 	   128.2  	153  	333  	0.020 	0.080 GRA.CI.wus.glib
WAK.NN (D) 	Y 	   133.4  	294  	113  	0.020 	0.080 WAK.NN.wus.glib
YER.NN (D) 	Y 	   149.8  	316  	135  	0.020 	0.080 YER.NN.wus.glib
PNT.NN (D) 	Y 	   180.2  	311  	130  	0.020 	0.080 PNT.NN.wus.glib

 (V)-velocity (D)-Displacement

Author: www-data
Date: 2013/02/13 13:49:56

mtinv Version 2.1_DEVEL OCT2008

Magnitudes

Given the availability of digital waveforms for determination of the moment tensor, this section documents the added processing leading to mLg, if appropriate to the region, and ML by application of the respective IASPEI formulae. As a research study, the linear distance term of the IASPEI formula for ML is adjusted to remove a linear distance trend in residuals to give a regionally defined ML. The defined ML uses horizontal component recordings, but the same procedure is applied to the vertical components since there may be some interest in vertical component ground motions. Residual plots versus distance may indicate interesting features of ground motion scaling in some distance ranges. A residual plot of the regionalized magnitude is given as a function of distance and azimuth, since data sets may transcend different wave propagation provinces.

ML Magnitude


Left: ML computed using the IASPEI formula for Horizontal components. Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot. Right: Residuals from new relation as a function of distance and azimuth.


Left: ML computed using the IASPEI formula for Vertical components (research). Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot. Right: Residuals from new relation as a function of distance and azimuth.

Context

The left panel of the next figure presents the focal mechanism for this earthquake (red) in the context of other nearby events (blue) in the SLU Moment Tensor Catalog. The right panel shows the inferred direction of maximum compressive stress and the type of faulting (green is strike-slip, red is normal, blue is thrust; oblique is shown by a combination of colors). Thus context plot is useful for assessing the appropriateness of the moment tensor of this event.

Waveform Inversion using wvfgrd96

The focal mechanism was determined using broadband seismic waveforms. The location of the event (star) and the stations used for (red) the waveform inversion are shown in the next figure.
Location of broadband stations used for waveform inversion

The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green's functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.

The observed and predicted traces are filtered using the following gsac commands:

hp c 0.02 n 3
lp c 0.06 n 3
br c 0.12 0.25 n 4 p 2
The results of this grid search are as follow:

           DEPTH  STK   DIP  RAKE   MW    FIT
WVFGRD96    0.5    75    75    20   3.37 0.3865
WVFGRD96    1.0   250    90     0   3.37 0.4151
WVFGRD96    2.0    75    70    20   3.49 0.5202
WVFGRD96    3.0   250    60     5   3.51 0.5463
WVFGRD96    4.0   245    50    -5   3.56 0.5689
WVFGRD96    5.0   245    50    -5   3.57 0.5835
WVFGRD96    6.0   245    60   -15   3.57 0.5926
WVFGRD96    7.0   245    60   -15   3.58 0.5997
WVFGRD96    8.0   240    55   -25   3.62 0.6025
WVFGRD96    9.0   240    55   -25   3.63 0.6048
WVFGRD96   10.0   240    60   -25   3.63 0.6049
WVFGRD96   11.0   245    65   -20   3.63 0.6045
WVFGRD96   12.0   245    65   -15   3.63 0.6032
WVFGRD96   13.0   245    65   -15   3.64 0.6006
WVFGRD96   14.0   245    65   -15   3.65 0.5973
WVFGRD96   15.0   245    70   -15   3.65 0.5937
WVFGRD96   16.0   245    70   -10   3.66 0.5898
WVFGRD96   17.0   245    70   -10   3.67 0.5856
WVFGRD96   18.0   245    70   -10   3.67 0.5809
WVFGRD96   19.0   245    70   -10   3.68 0.5756
WVFGRD96   20.0   245    70   -10   3.69 0.5700
WVFGRD96   21.0   245    70   -10   3.70 0.5641
WVFGRD96   22.0   245    70   -10   3.70 0.5576
WVFGRD96   23.0   245    70   -10   3.71 0.5508
WVFGRD96   24.0   245    70   -10   3.72 0.5437
WVFGRD96   25.0    70    75    10   3.73 0.5355
WVFGRD96   26.0    70    75    10   3.73 0.5293
WVFGRD96   27.0    70    75    10   3.74 0.5228
WVFGRD96   28.0    70    75    10   3.75 0.5160
WVFGRD96   29.0    70    75    10   3.76 0.5089

The best solution is

WVFGRD96   10.0   240    60   -25   3.63 0.6049

The mechanism corresponding to the best fit is
Figure 1. Waveform inversion focal mechanism

The best fit as a function of depth is given in the following figure:

Figure 2. Depth sensitivity for waveform mechanism

The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed, the velocity model used in the predictions may not be perfect and the epicentral parameters may be be off. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).

The bandpass filter used in the processing and for the display was

hp c 0.02 n 3
lp c 0.06 n 3
br c 0.12 0.25 n 4 p 2
Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated. The time scale is relative to the first trace sample.

Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to the waveforms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure.

A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:

Assuming only a mislocation, the time shifts are fit to a functional form:

 Time_shift = A + B cos Azimuth + C Sin Azimuth

The time shifts for this inversion lead to the next figure:

The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.

Velocity Model

The WUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows (The format is in the model96 format of Computer Programs in Seismology).

MODEL.01
Model after     8 iterations
ISOTROPIC
KGS
FLAT EARTH
1-D
CONSTANT VELOCITY
LINE08
LINE09
LINE10
LINE11
      H(KM)   VP(KM/S)   VS(KM/S) RHO(GM/CC)         QP         QS       ETAP       ETAS      FREFP      FREFS
     1.9000     3.4065     2.0089     2.2150  0.302E-02  0.679E-02   0.00       0.00       1.00       1.00    
     6.1000     5.5445     3.2953     2.6089  0.349E-02  0.784E-02   0.00       0.00       1.00       1.00    
    13.0000     6.2708     3.7396     2.7812  0.212E-02  0.476E-02   0.00       0.00       1.00       1.00    
    19.0000     6.4075     3.7680     2.8223  0.111E-02  0.249E-02   0.00       0.00       1.00       1.00    
     0.0000     7.9000     4.6200     3.2760  0.164E-10  0.370E-10   0.00       0.00       1.00       1.00    
Last Changed Fri Apr 26 03:50:58 PM CDT 2024