The ANSS event ID is ak012fko16th and the event page is at https://earthquake.usgs.gov/earthquakes/eventpage/ak012fko16th/executive.
2012/12/04 01:42:48 61.240 -150.768 63.7 5.8 Alaska
USGS/SLU Moment Tensor Solution ENS 2012/12/04 01:42:48:0 61.24 -150.77 63.7 5.8 Alaska Stations used: AK.BMR AK.BPAW AK.BRLK AK.CAST AK.CCB AK.CNP AK.DHY AK.DIV AK.DOT AK.EYAK AK.FID AK.GHO AK.GLI AK.GLM AK.HMT AK.HOM AK.KLU AK.KNK AK.MCK AK.MDM AK.PAX AK.PIN AK.PPD AK.PPLA AK.RAG AK.RC01 AK.RND AK.SAW AK.SCM AK.SKN AK.SWD AK.TRF AT.MID AT.PMR AT.SVW2 IU.COLA Filtering commands used: hp c 0.02 n 3 lp c 0.05 n 3 Best Fitting Double Couple Mo = 4.47e+24 dyne-cm Mw = 5.70 Z = 63 km Plane Strike Dip Rake NP1 320 70 142 NP2 65 55 25 Principal Axes: Axis Value Plunge Azimuth T 4.47e+24 41 277 N 0.00e+00 48 116 P -4.47e+24 9 15 Moment Tensor: (dyne-cm) Component Value Mxx -4.00e+24 Mxy -1.45e+24 Mxz -3.96e+23 Myy 2.22e+24 Myz -2.38e+24 Mzz 1.77e+24 ----------- --------------- P ---- #----------------- ------- #######----------------------- ############---------------------- ###############--------------------- ##################-------------------- #####################-----------------## #######################--------------### ####### ###############------------##### ####### T #################---------###### ####### ##################-------####### #############################----######### ######################################## ###########################---########## ######################--------######## --##############--------------###### ------------------------------#### ----------------------------## ---------------------------# ---------------------- -------------- Global CMT Convention Moment Tensor: R T P 1.77e+24 -3.96e+23 2.38e+24 -3.96e+23 -4.00e+24 1.45e+24 2.38e+24 1.45e+24 2.22e+24 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20121204014248/index.html |
STK = 65 DIP = 55 RAKE = 25 MW = 5.70 HS = 63.0
The NDK file is 20121204014248.ndk The waveform inversion is preferred.
The following compares this source inversion to those provided by others. The purpose is to look for major differences and also to note slight differences that might be inherent to the processing procedure. For completeness the USGS/SLU solution is repeated from above.
USGS/SLU Moment Tensor Solution ENS 2012/12/04 01:42:48:0 61.24 -150.77 63.7 5.8 Alaska Stations used: AK.BMR AK.BPAW AK.BRLK AK.CAST AK.CCB AK.CNP AK.DHY AK.DIV AK.DOT AK.EYAK AK.FID AK.GHO AK.GLI AK.GLM AK.HMT AK.HOM AK.KLU AK.KNK AK.MCK AK.MDM AK.PAX AK.PIN AK.PPD AK.PPLA AK.RAG AK.RC01 AK.RND AK.SAW AK.SCM AK.SKN AK.SWD AK.TRF AT.MID AT.PMR AT.SVW2 IU.COLA Filtering commands used: hp c 0.02 n 3 lp c 0.05 n 3 Best Fitting Double Couple Mo = 4.47e+24 dyne-cm Mw = 5.70 Z = 63 km Plane Strike Dip Rake NP1 320 70 142 NP2 65 55 25 Principal Axes: Axis Value Plunge Azimuth T 4.47e+24 41 277 N 0.00e+00 48 116 P -4.47e+24 9 15 Moment Tensor: (dyne-cm) Component Value Mxx -4.00e+24 Mxy -1.45e+24 Mxz -3.96e+23 Myy 2.22e+24 Myz -2.38e+24 Mzz 1.77e+24 ----------- --------------- P ---- #----------------- ------- #######----------------------- ############---------------------- ###############--------------------- ##################-------------------- #####################-----------------## #######################--------------### ####### ###############------------##### ####### T #################---------###### ####### ##################-------####### #############################----######### ######################################## ###########################---########## ######################--------######## --##############--------------###### ------------------------------#### ----------------------------## ---------------------------# ---------------------- -------------- Global CMT Convention Moment Tensor: R T P 1.77e+24 -3.96e+23 2.38e+24 -3.96e+23 -4.00e+24 1.45e+24 2.38e+24 1.45e+24 2.22e+24 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20121204014248/index.html |
USGS Body-Wave Moment Tensor Solution 12/12/04 01:42:48.00 Epicenter: 61.230 -150.719 MW 5.7 USGS MOMENT TENSOR SOLUTION Depth 60 No. of sta: 35 Moment Tensor; Scale 10**17 Nm Mrr= 2.34 Mtt=-4.28 Mpp= 1.95 Mrt= 0.08 Mrp= 3.22 Mtp= 1.86 Principal axes: T Val= 5.55 Plg=45 Azm=281 N -0.65 44 116 P -4.90 7 19 Best Double Couple:Mo=5.3*10**17 NP1:Strike=322 Dip=66 Slip= 140 NP2: 70 54 30 |
December 4, 2012, SOUTHERN ALASKA, MW=5.8 Howard Koss CENTROID-MOMENT-TENSOR SOLUTION GCMT EVENT: C201212040142A DATA: II IU CU MN G IC LD GE DK L.P.BODY WAVES:132S, 271C, T= 40 MANTLE WAVES: 56S, 61C, T=125 SURFACE WAVES: 139S, 287C, T= 50 TIMESTAMP: Q-20121204101317 CENTROID LOCATION: ORIGIN TIME: 01:42:51.6 0.1 LAT:61.43N 0.01;LON:150.89W 0.01 DEP: 67.6 0.8;TRIANG HDUR: 1.9 MOMENT TENSOR: SCALE 10**24 D-CM RR= 1.270 0.047; TT=-3.710 0.050 PP= 2.440 0.051; RT= 0.390 0.044 RP= 3.390 0.042; TP= 2.920 0.046 PRINCIPAL AXES: 1.(T) VAL= 5.956;PLG=35;AZM=288 2.(N) -0.922; 53; 129 3.(P) -5.034; 10; 26 BEST DBLE.COUPLE:M0= 5.50*10**24 NP1: STRIKE= 73;DIP=58;SLIP= 20 NP2: STRIKE=332;DIP=73;SLIP= 146 ---------- ###----------- P -- #######--------- ---- ###########---------------- #############---------------- ################--------------- #### ##########-------------- ##### T ###########------------## ##### ############----------### #####################-------##### ######################----####### #####################-######### ---##############-----######### ---------------------######## ---------------------###### -------------------#### -----------------## ----------- |
USGS WPhase Moment Solution 12/12/04 1:42:48 Epicenter: 61.230 -150.719 MW 5.8 USGS/WPHASE CENTROID MOMENT TENSOR 12/12/04 01:42:48.00 Centroid: 61.230 -150.719 Depth 50 No. of sta: 36 Moment Tensor; Scale 10**17 Nm Mrr= 2.41 Mtt=-3.82 Mpp= 1.42 Mrt= 0.22 Mrp= 3.55 Mtp= 2.38 Principal axes: T Val= 5.82 Plg=45 Azm=285 N = -0.88 42 125 P = -4.94 10 26 Best Double Couple:Mo=5.4*10**17 NP1:Strike= 77 Dip=51 Slip= 29 NP2: 328 68 137 |
Given the availability of digital waveforms for determination of the moment tensor, this section documents the added processing leading to mLg, if appropriate to the region, and ML by application of the respective IASPEI formulae. As a research study, the linear distance term of the IASPEI formula for ML is adjusted to remove a linear distance trend in residuals to give a regionally defined ML. The defined ML uses horizontal component recordings, but the same procedure is applied to the vertical components since there may be some interest in vertical component ground motions. Residual plots versus distance may indicate interesting features of ground motion scaling in some distance ranges. A residual plot of the regionalized magnitude is given as a function of distance and azimuth, since data sets may transcend different wave propagation provinces.
Left: ML computed using the IASPEI formula for Horizontal components. Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
Left: ML computed using the IASPEI formula for Vertical components (research). Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
![]() |
The focal mechanism was determined using broadband seismic waveforms. The location of the event (star) and the stations used for (red) the waveform inversion are shown in the next figure.
![]() |
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green's functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
hp c 0.02 n 3 lp c 0.05 n 3The results of this grid search are as follow:
DEPTH STK DIP RAKE MW FIT WVFGRD96 1.0 210 50 -75 4.97 0.2202 WVFGRD96 2.0 220 60 -45 5.05 0.2827 WVFGRD96 3.0 205 50 -70 5.13 0.3112 WVFGRD96 4.0 225 80 -25 5.10 0.3220 WVFGRD96 5.0 230 90 -15 5.11 0.3377 WVFGRD96 6.0 50 85 15 5.14 0.3551 WVFGRD96 7.0 50 80 10 5.16 0.3721 WVFGRD96 8.0 50 75 10 5.19 0.3887 WVFGRD96 9.0 50 75 10 5.21 0.4020 WVFGRD96 10.0 50 75 10 5.22 0.4134 WVFGRD96 11.0 50 75 10 5.24 0.4229 WVFGRD96 12.0 50 75 10 5.25 0.4309 WVFGRD96 13.0 55 70 10 5.25 0.4391 WVFGRD96 14.0 55 70 10 5.26 0.4482 WVFGRD96 15.0 55 70 15 5.27 0.4598 WVFGRD96 16.0 55 70 15 5.28 0.4725 WVFGRD96 17.0 55 70 15 5.29 0.4851 WVFGRD96 18.0 55 70 15 5.30 0.4973 WVFGRD96 19.0 55 70 15 5.31 0.5091 WVFGRD96 20.0 55 70 15 5.32 0.5205 WVFGRD96 21.0 55 70 15 5.33 0.5310 WVFGRD96 22.0 55 70 15 5.34 0.5417 WVFGRD96 23.0 55 70 15 5.34 0.5520 WVFGRD96 24.0 55 70 15 5.35 0.5619 WVFGRD96 25.0 55 70 15 5.36 0.5714 WVFGRD96 26.0 55 70 10 5.37 0.5808 WVFGRD96 27.0 55 70 10 5.38 0.5898 WVFGRD96 28.0 55 70 10 5.39 0.5985 WVFGRD96 29.0 60 65 15 5.39 0.6074 WVFGRD96 30.0 60 65 15 5.40 0.6160 WVFGRD96 31.0 60 65 15 5.41 0.6245 WVFGRD96 32.0 60 65 15 5.42 0.6326 WVFGRD96 33.0 60 65 15 5.43 0.6404 WVFGRD96 34.0 60 65 15 5.44 0.6482 WVFGRD96 35.0 60 65 15 5.45 0.6557 WVFGRD96 36.0 60 65 15 5.46 0.6633 WVFGRD96 37.0 60 65 15 5.47 0.6707 WVFGRD96 38.0 60 65 15 5.48 0.6780 WVFGRD96 39.0 60 65 10 5.49 0.6847 WVFGRD96 40.0 60 55 15 5.56 0.6904 WVFGRD96 41.0 60 55 15 5.57 0.6976 WVFGRD96 42.0 60 55 15 5.57 0.7043 WVFGRD96 43.0 60 60 20 5.58 0.7109 WVFGRD96 44.0 60 60 20 5.59 0.7173 WVFGRD96 45.0 60 60 20 5.60 0.7233 WVFGRD96 46.0 60 60 20 5.61 0.7292 WVFGRD96 47.0 60 60 20 5.61 0.7348 WVFGRD96 48.0 60 60 20 5.62 0.7403 WVFGRD96 49.0 60 60 20 5.63 0.7455 WVFGRD96 50.0 65 55 20 5.63 0.7503 WVFGRD96 51.0 65 55 20 5.64 0.7550 WVFGRD96 52.0 65 55 25 5.64 0.7593 WVFGRD96 53.0 65 55 25 5.65 0.7631 WVFGRD96 54.0 65 55 25 5.65 0.7667 WVFGRD96 55.0 65 55 25 5.66 0.7698 WVFGRD96 56.0 65 55 25 5.67 0.7726 WVFGRD96 57.0 65 55 25 5.67 0.7750 WVFGRD96 58.0 65 55 25 5.68 0.7769 WVFGRD96 59.0 65 55 25 5.68 0.7784 WVFGRD96 60.0 65 55 25 5.69 0.7796 WVFGRD96 61.0 65 55 25 5.69 0.7804 WVFGRD96 62.0 65 55 25 5.69 0.7805 WVFGRD96 63.0 65 55 25 5.70 0.7805 WVFGRD96 64.0 65 55 25 5.70 0.7804 WVFGRD96 65.0 65 55 25 5.71 0.7793 WVFGRD96 66.0 65 55 25 5.71 0.7783 WVFGRD96 67.0 65 55 25 5.71 0.7771 WVFGRD96 68.0 65 55 25 5.72 0.7753 WVFGRD96 69.0 65 55 25 5.72 0.7734 WVFGRD96 70.0 65 55 25 5.72 0.7709 WVFGRD96 71.0 65 55 25 5.73 0.7683 WVFGRD96 72.0 65 55 25 5.73 0.7661 WVFGRD96 73.0 65 55 25 5.73 0.7632 WVFGRD96 74.0 65 55 25 5.73 0.7602 WVFGRD96 75.0 65 55 25 5.74 0.7574 WVFGRD96 76.0 65 55 25 5.74 0.7540 WVFGRD96 77.0 65 55 25 5.74 0.7507 WVFGRD96 78.0 65 55 25 5.74 0.7469 WVFGRD96 79.0 65 55 25 5.75 0.7432 WVFGRD96 80.0 65 55 25 5.75 0.7391 WVFGRD96 81.0 65 55 25 5.75 0.7352 WVFGRD96 82.0 65 55 25 5.75 0.7305 WVFGRD96 83.0 65 55 25 5.75 0.7264 WVFGRD96 84.0 65 55 25 5.76 0.7220 WVFGRD96 85.0 65 55 25 5.76 0.7172 WVFGRD96 86.0 65 55 25 5.76 0.7126 WVFGRD96 87.0 70 55 25 5.76 0.7081 WVFGRD96 88.0 70 55 25 5.76 0.7036 WVFGRD96 89.0 70 55 25 5.76 0.6988 WVFGRD96 90.0 70 55 25 5.76 0.6946 WVFGRD96 91.0 70 55 25 5.76 0.6900 WVFGRD96 92.0 70 55 25 5.76 0.6852 WVFGRD96 93.0 70 55 25 5.76 0.6806 WVFGRD96 94.0 70 55 25 5.76 0.6756 WVFGRD96 95.0 70 55 25 5.77 0.6712 WVFGRD96 96.0 70 55 25 5.77 0.6664 WVFGRD96 97.0 70 55 25 5.77 0.6617 WVFGRD96 98.0 70 55 25 5.77 0.6569 WVFGRD96 99.0 70 55 25 5.77 0.6527 WVFGRD96 100.0 70 55 25 5.77 0.6479 WVFGRD96 101.0 70 55 25 5.77 0.6437 WVFGRD96 102.0 70 55 25 5.77 0.6392 WVFGRD96 103.0 70 55 25 5.77 0.6349 WVFGRD96 104.0 70 55 25 5.78 0.6307 WVFGRD96 105.0 70 55 25 5.78 0.6261 WVFGRD96 106.0 70 55 20 5.78 0.6224 WVFGRD96 107.0 70 55 20 5.78 0.6182 WVFGRD96 108.0 70 55 20 5.78 0.6147 WVFGRD96 109.0 70 55 20 5.78 0.6107 WVFGRD96 110.0 70 55 20 5.78 0.6068 WVFGRD96 111.0 70 55 20 5.79 0.6031 WVFGRD96 112.0 70 55 20 5.79 0.5991 WVFGRD96 113.0 70 55 20 5.79 0.5957 WVFGRD96 114.0 70 55 20 5.79 0.5920 WVFGRD96 115.0 70 55 20 5.79 0.5884 WVFGRD96 116.0 65 60 20 5.79 0.5849 WVFGRD96 117.0 65 60 20 5.79 0.5813 WVFGRD96 118.0 65 60 20 5.79 0.5782 WVFGRD96 119.0 65 60 20 5.79 0.5747 WVFGRD96 120.0 65 60 20 5.80 0.5714 WVFGRD96 121.0 65 60 20 5.80 0.5682 WVFGRD96 122.0 65 60 20 5.80 0.5653 WVFGRD96 123.0 65 60 20 5.80 0.5621 WVFGRD96 124.0 65 60 20 5.80 0.5594 WVFGRD96 125.0 65 60 20 5.80 0.5565 WVFGRD96 126.0 65 60 20 5.80 0.5534 WVFGRD96 127.0 65 60 20 5.80 0.5509 WVFGRD96 128.0 65 60 20 5.80 0.5479 WVFGRD96 129.0 65 60 20 5.80 0.5449
The best solution is
WVFGRD96 63.0 65 55 25 5.70 0.7805
The mechanism corresponding to the best fit is
![]() |
|
The best fit as a function of depth is given in the following figure:
![]() |
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed, the velocity model used in the predictions may not be perfect and the epicentral parameters may be be off. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
hp c 0.02 n 3 lp c 0.05 n 3
![]() |
Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated. The time scale is relative to the first trace sample. |
![]() |
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to the waveforms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
The WUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows (The format is in the model96 format of Computer Programs in Seismology).
MODEL.01 Model after 8 iterations ISOTROPIC KGS FLAT EARTH 1-D CONSTANT VELOCITY LINE08 LINE09 LINE10 LINE11 H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS 1.9000 3.4065 2.0089 2.2150 0.302E-02 0.679E-02 0.00 0.00 1.00 1.00 6.1000 5.5445 3.2953 2.6089 0.349E-02 0.784E-02 0.00 0.00 1.00 1.00 13.0000 6.2708 3.7396 2.7812 0.212E-02 0.476E-02 0.00 0.00 1.00 1.00 19.0000 6.4075 3.7680 2.8223 0.111E-02 0.249E-02 0.00 0.00 1.00 1.00 0.0000 7.9000 4.6200 3.2760 0.164E-10 0.370E-10 0.00 0.00 1.00 1.00