The ANSS event ID is ak012fftc799 and the event page is at https://earthquake.usgs.gov/earthquakes/eventpage/ak012fftc799/executive.
2012/12/01 08:00:57 58.423 -154.118 84.7 5.4 Alaska
USGS/SLU Moment Tensor Solution ENS 2012/12/01 08:00:57:0 58.42 -154.12 84.7 5.4 Alaska Stations used: AK.BRLK AK.CAST AK.CNP AK.EYAK AK.FID AK.HOM AK.KNK AK.PPLA AK.PWL AK.RC01 AK.SAW AK.SCM AK.SII AK.SWD AT.CHGN AT.MID AT.OHAK AT.PMR AT.SVW2 Filtering commands used: hp c 0.02 n 3 lp c 0.05 n 3 Best Fitting Double Couple Mo = 1.24e+24 dyne-cm Mw = 5.33 Z = 92 km Plane Strike Dip Rake NP1 65 85 55 NP2 328 35 171 Principal Axes: Axis Value Plunge Azimuth T 1.24e+24 40 303 N 0.00e+00 35 68 P -1.24e+24 31 183 Moment Tensor: (dyne-cm) Component Value Mxx -6.90e+23 Mxy -3.89e+23 Mxz 8.84e+23 Myy 5.13e+23 Myz -4.81e+23 Mzz 1.77e+23 -------------- ########-------------- ################------------ ####################---------- ########################---------- ###########################--------- ####### ####################-------# ######## T #####################---##### ######## #####################-####### ##############################-----####### ##########################---------####### ######################--------------###### ##################------------------###### #############----------------------##### ########---------------------------##### ##--------------------------------#### ---------------------------------### --------------- -------------### ------------- P ------------## ------------ -----------## ---------------------- -------------- Global CMT Convention Moment Tensor: R T P 1.77e+23 8.84e+23 4.81e+23 8.84e+23 -6.90e+23 3.89e+23 4.81e+23 3.89e+23 5.13e+23 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20121201080057/index.html |
STK = 65 DIP = 85 RAKE = 55 MW = 5.33 HS = 92.0
The NDK file is 20121201080057.ndk The waveform inversion is preferred.
The following compares this source inversion to those provided by others. The purpose is to look for major differences and also to note slight differences that might be inherent to the processing procedure. For completeness the USGS/SLU solution is repeated from above.
USGS/SLU Moment Tensor Solution ENS 2012/12/01 08:00:57:0 58.42 -154.12 84.7 5.4 Alaska Stations used: AK.BRLK AK.CAST AK.CNP AK.EYAK AK.FID AK.HOM AK.KNK AK.PPLA AK.PWL AK.RC01 AK.SAW AK.SCM AK.SII AK.SWD AT.CHGN AT.MID AT.OHAK AT.PMR AT.SVW2 Filtering commands used: hp c 0.02 n 3 lp c 0.05 n 3 Best Fitting Double Couple Mo = 1.24e+24 dyne-cm Mw = 5.33 Z = 92 km Plane Strike Dip Rake NP1 65 85 55 NP2 328 35 171 Principal Axes: Axis Value Plunge Azimuth T 1.24e+24 40 303 N 0.00e+00 35 68 P -1.24e+24 31 183 Moment Tensor: (dyne-cm) Component Value Mxx -6.90e+23 Mxy -3.89e+23 Mxz 8.84e+23 Myy 5.13e+23 Myz -4.81e+23 Mzz 1.77e+23 -------------- ########-------------- ################------------ ####################---------- ########################---------- ###########################--------- ####### ####################-------# ######## T #####################---##### ######## #####################-####### ##############################-----####### ##########################---------####### ######################--------------###### ##################------------------###### #############----------------------##### ########---------------------------##### ##--------------------------------#### ---------------------------------### --------------- -------------### ------------- P ------------## ------------ -----------## ---------------------- -------------- Global CMT Convention Moment Tensor: R T P 1.77e+23 8.84e+23 4.81e+23 8.84e+23 -6.90e+23 3.89e+23 4.81e+23 3.89e+23 5.13e+23 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20121201080057/index.html |
USGS WPhase Moment Solution ALASKA PENINSULA 12/12/01 8:00:57 Epicenter: 58.533 -154.180 MW 5.3 USGS/WPHASE CENTROID MOMENT TENSOR 12/12/01 08:00:57.00 Centroid: 58.433 -153.796 Depth 100 No. of sta: 35 Moment Tensor; Scale 10**16 Nm Mrr= 4.21 Mtt=-9.92 Mpp= 5.70 Mrt= 6.42 Mrp= 4.37 Mtp= 0.09 Principal axes: T Val= 10.38 Plg=45 Azm=288 N = 2.15 36 67 P =-12.53 22 174 Best Double Couple:Mo=1.2*10**17 NP1:Strike=310 Dip=40 Slip= 158 NP2: 57 76 52 |
Given the availability of digital waveforms for determination of the moment tensor, this section documents the added processing leading to mLg, if appropriate to the region, and ML by application of the respective IASPEI formulae. As a research study, the linear distance term of the IASPEI formula for ML is adjusted to remove a linear distance trend in residuals to give a regionally defined ML. The defined ML uses horizontal component recordings, but the same procedure is applied to the vertical components since there may be some interest in vertical component ground motions. Residual plots versus distance may indicate interesting features of ground motion scaling in some distance ranges. A residual plot of the regionalized magnitude is given as a function of distance and azimuth, since data sets may transcend different wave propagation provinces.
Left: ML computed using the IASPEI formula for Horizontal components. Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
Left: ML computed using the IASPEI formula for Vertical components (research). Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
![]() |
The focal mechanism was determined using broadband seismic waveforms. The location of the event (star) and the stations used for (red) the waveform inversion are shown in the next figure.
![]() |
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green's functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
hp c 0.02 n 3 lp c 0.05 n 3The results of this grid search are as follow:
DEPTH STK DIP RAKE MW FIT WVFGRD96 0.5 50 45 -65 4.50 0.1438 WVFGRD96 1.0 40 45 -80 4.54 0.1550 WVFGRD96 2.0 45 45 -75 4.61 0.1859 WVFGRD96 3.0 40 40 -85 4.67 0.2048 WVFGRD96 4.0 220 50 -90 4.71 0.2087 WVFGRD96 5.0 120 45 -60 4.64 0.2025 WVFGRD96 6.0 120 45 -55 4.66 0.2031 WVFGRD96 7.0 120 45 -55 4.67 0.1984 WVFGRD96 8.0 120 45 -55 4.70 0.2084 WVFGRD96 9.0 130 50 -45 4.68 0.1993 WVFGRD96 10.0 135 50 -30 4.67 0.1952 WVFGRD96 11.0 135 50 -25 4.67 0.1909 WVFGRD96 12.0 135 50 -25 4.67 0.1893 WVFGRD96 13.0 140 55 -20 4.67 0.1886 WVFGRD96 14.0 140 55 -15 4.67 0.1862 WVFGRD96 15.0 140 55 -15 4.68 0.1866 WVFGRD96 16.0 140 55 -15 4.68 0.1845 WVFGRD96 17.0 150 45 15 4.70 0.1876 WVFGRD96 18.0 150 45 15 4.71 0.1910 WVFGRD96 19.0 150 45 15 4.72 0.1916 WVFGRD96 20.0 150 45 15 4.73 0.1949 WVFGRD96 21.0 70 90 40 4.72 0.1963 WVFGRD96 22.0 70 90 40 4.74 0.2006 WVFGRD96 23.0 70 90 40 4.75 0.2048 WVFGRD96 24.0 250 85 -40 4.76 0.2100 WVFGRD96 25.0 70 90 40 4.77 0.2139 WVFGRD96 26.0 70 90 40 4.78 0.2185 WVFGRD96 27.0 250 85 -40 4.79 0.2250 WVFGRD96 28.0 245 80 -45 4.81 0.2303 WVFGRD96 29.0 245 80 -45 4.82 0.2359 WVFGRD96 30.0 245 80 -45 4.83 0.2416 WVFGRD96 31.0 245 80 -45 4.84 0.2471 WVFGRD96 32.0 245 80 -45 4.85 0.2526 WVFGRD96 33.0 245 80 -45 4.86 0.2581 WVFGRD96 34.0 250 80 -40 4.87 0.2640 WVFGRD96 35.0 250 80 -40 4.89 0.2699 WVFGRD96 36.0 250 80 -35 4.90 0.2755 WVFGRD96 37.0 250 85 -35 4.91 0.2816 WVFGRD96 38.0 250 85 -35 4.93 0.2875 WVFGRD96 39.0 250 85 -30 4.95 0.2935 WVFGRD96 40.0 245 70 -50 5.04 0.3109 WVFGRD96 41.0 245 70 -50 5.05 0.3168 WVFGRD96 42.0 240 70 -50 5.06 0.3230 WVFGRD96 43.0 240 70 -50 5.07 0.3292 WVFGRD96 44.0 240 70 -50 5.08 0.3352 WVFGRD96 45.0 240 70 -50 5.09 0.3412 WVFGRD96 46.0 240 70 -50 5.10 0.3472 WVFGRD96 47.0 240 70 -50 5.11 0.3530 WVFGRD96 48.0 240 70 -50 5.12 0.3587 WVFGRD96 49.0 240 75 -50 5.13 0.3646 WVFGRD96 50.0 240 75 -50 5.14 0.3710 WVFGRD96 51.0 240 75 -45 5.15 0.3786 WVFGRD96 52.0 240 75 -45 5.15 0.3858 WVFGRD96 53.0 245 80 -45 5.16 0.3931 WVFGRD96 54.0 245 80 -45 5.17 0.4002 WVFGRD96 55.0 245 80 -45 5.18 0.4071 WVFGRD96 56.0 245 80 -45 5.18 0.4138 WVFGRD96 57.0 245 80 -45 5.19 0.4204 WVFGRD96 58.0 245 80 -45 5.20 0.4266 WVFGRD96 59.0 245 85 -45 5.21 0.4332 WVFGRD96 60.0 245 85 -45 5.21 0.4396 WVFGRD96 61.0 245 85 -45 5.22 0.4456 WVFGRD96 62.0 245 85 -45 5.23 0.4513 WVFGRD96 63.0 245 85 -45 5.23 0.4566 WVFGRD96 64.0 245 85 -45 5.24 0.4617 WVFGRD96 65.0 245 85 -45 5.24 0.4664 WVFGRD96 66.0 245 85 -45 5.25 0.4707 WVFGRD96 67.0 245 85 -45 5.25 0.4748 WVFGRD96 68.0 245 85 -45 5.26 0.4787 WVFGRD96 69.0 245 85 -45 5.26 0.4823 WVFGRD96 70.0 245 85 -45 5.27 0.4855 WVFGRD96 71.0 245 85 -45 5.27 0.4884 WVFGRD96 72.0 245 85 -45 5.27 0.4918 WVFGRD96 73.0 240 85 -50 5.29 0.4952 WVFGRD96 74.0 65 90 50 5.28 0.4989 WVFGRD96 75.0 245 90 -50 5.29 0.5034 WVFGRD96 76.0 65 90 50 5.29 0.5075 WVFGRD96 77.0 65 90 50 5.29 0.5112 WVFGRD96 78.0 65 90 50 5.30 0.5144 WVFGRD96 79.0 65 90 50 5.30 0.5173 WVFGRD96 80.0 65 90 50 5.30 0.5200 WVFGRD96 81.0 65 90 50 5.31 0.5225 WVFGRD96 82.0 245 90 -50 5.31 0.5246 WVFGRD96 83.0 65 90 50 5.31 0.5260 WVFGRD96 84.0 65 90 50 5.31 0.5274 WVFGRD96 85.0 245 90 -50 5.31 0.5285 WVFGRD96 86.0 65 90 50 5.32 0.5291 WVFGRD96 87.0 245 90 -50 5.32 0.5296 WVFGRD96 88.0 65 90 55 5.32 0.5304 WVFGRD96 89.0 245 90 -55 5.33 0.5308 WVFGRD96 90.0 245 90 -55 5.33 0.5307 WVFGRD96 91.0 65 85 55 5.32 0.5312 WVFGRD96 92.0 65 85 55 5.33 0.5312 WVFGRD96 93.0 245 90 -55 5.33 0.5299 WVFGRD96 94.0 65 85 55 5.33 0.5301 WVFGRD96 95.0 245 90 -55 5.33 0.5278 WVFGRD96 96.0 65 85 55 5.33 0.5284 WVFGRD96 97.0 65 85 55 5.33 0.5270 WVFGRD96 98.0 65 85 55 5.33 0.5255 WVFGRD96 99.0 65 85 55 5.33 0.5240 WVFGRD96 100.0 65 85 55 5.33 0.5223 WVFGRD96 101.0 65 85 55 5.33 0.5203 WVFGRD96 102.0 245 90 -55 5.34 0.5148 WVFGRD96 103.0 245 90 -55 5.34 0.5125 WVFGRD96 104.0 240 90 -60 5.35 0.5103 WVFGRD96 105.0 240 90 -60 5.35 0.5075 WVFGRD96 106.0 65 85 60 5.34 0.5097 WVFGRD96 107.0 65 85 60 5.34 0.5073 WVFGRD96 108.0 65 85 60 5.34 0.5046 WVFGRD96 109.0 65 85 60 5.34 0.5020 WVFGRD96 110.0 65 85 60 5.34 0.4993 WVFGRD96 111.0 65 85 60 5.34 0.4963 WVFGRD96 112.0 65 85 60 5.34 0.4933 WVFGRD96 113.0 65 85 60 5.34 0.4904 WVFGRD96 114.0 65 85 60 5.34 0.4872 WVFGRD96 115.0 65 85 60 5.34 0.4841 WVFGRD96 116.0 65 85 60 5.34 0.4808 WVFGRD96 117.0 65 85 60 5.34 0.4775 WVFGRD96 118.0 65 85 60 5.34 0.4740 WVFGRD96 119.0 65 85 60 5.34 0.4707 WVFGRD96 120.0 65 85 60 5.34 0.4673 WVFGRD96 121.0 70 80 55 5.32 0.4638 WVFGRD96 122.0 70 80 55 5.32 0.4607 WVFGRD96 123.0 70 80 55 5.32 0.4573 WVFGRD96 124.0 70 80 55 5.32 0.4542 WVFGRD96 125.0 70 80 55 5.32 0.4508 WVFGRD96 126.0 70 80 55 5.32 0.4477 WVFGRD96 127.0 65 80 60 5.33 0.4443 WVFGRD96 128.0 65 80 60 5.33 0.4413 WVFGRD96 129.0 65 80 60 5.33 0.4380
The best solution is
WVFGRD96 92.0 65 85 55 5.33 0.5312
The mechanism corresponding to the best fit is
![]() |
|
The best fit as a function of depth is given in the following figure:
![]() |
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed, the velocity model used in the predictions may not be perfect and the epicentral parameters may be be off. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
hp c 0.02 n 3 lp c 0.05 n 3
![]() |
Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated. The time scale is relative to the first trace sample. |
![]() |
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to the waveforms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
The WUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows (The format is in the model96 format of Computer Programs in Seismology).
MODEL.01 Model after 8 iterations ISOTROPIC KGS FLAT EARTH 1-D CONSTANT VELOCITY LINE08 LINE09 LINE10 LINE11 H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS 1.9000 3.4065 2.0089 2.2150 0.302E-02 0.679E-02 0.00 0.00 1.00 1.00 6.1000 5.5445 3.2953 2.6089 0.349E-02 0.784E-02 0.00 0.00 1.00 1.00 13.0000 6.2708 3.7396 2.7812 0.212E-02 0.476E-02 0.00 0.00 1.00 1.00 19.0000 6.4075 3.7680 2.8223 0.111E-02 0.249E-02 0.00 0.00 1.00 1.00 0.0000 7.9000 4.6200 3.2760 0.164E-10 0.370E-10 0.00 0.00 1.00 1.00