The ANSS event ID is ak012b4fi0t8 and the event page is at https://earthquake.usgs.gov/earthquakes/eventpage/ak012b4fi0t8/executive.
2012/08/29 12:50:55 60.334 -150.735 65.8 4.4 Alaska
USGS/SLU Moment Tensor Solution ENS 2012/08/29 12:50:55:0 60.33 -150.74 65.8 4.4 Alaska Stations used: AK.BMR AK.BPAW AK.BRLK AK.CNP AK.DOT AK.FIB AK.FID AK.GHO AK.GLI AK.HIN AK.HOM AK.KNK AK.KTH AK.RC01 AK.RIDG AK.SAW AK.SCM AK.SKN AK.SSN AT.SVW2 II.KDAK IU.COLA Filtering commands used: hp c 0.02 n 3 lp c 0.06 n 3 Best Fitting Double Couple Mo = 7.85e+22 dyne-cm Mw = 4.53 Z = 72 km Plane Strike Dip Rake NP1 281 72 154 NP2 20 65 20 Principal Axes: Axis Value Plunge Azimuth T 7.85e+22 31 239 N 0.00e+00 58 69 P -7.85e+22 5 332 Moment Tensor: (dyne-cm) Component Value Mxx -4.54e+22 Mxy 5.78e+22 Mxz -2.34e+22 Myy 2.48e+22 Myz -2.69e+22 Mzz 2.06e+22 -------------- P ----------------### --- ----------------###### -----------------------####### --------------------------######## ---------------------------######### ---------------------------########### ----------------------------############ -###################--------############ ############################-############# ############################------######## ###########################----------##### ###########################-------------## ###### ################--------------- ###### T ###############---------------- ##### ##############---------------- ####################---------------- ##################---------------- ###############--------------- ############---------------- #######--------------- -------------- Global CMT Convention Moment Tensor: R T P 2.06e+22 -2.34e+22 2.69e+22 -2.34e+22 -4.54e+22 -5.78e+22 2.69e+22 -5.78e+22 2.48e+22 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20120829125055/index.html |
STK = 20 DIP = 65 RAKE = 20 MW = 4.53 HS = 72.0
The NDK file is 20120829125055.ndk The waveform inversion is preferred.
The following compares this source inversion to those provided by others. The purpose is to look for major differences and also to note slight differences that might be inherent to the processing procedure. For completeness the USGS/SLU solution is repeated from above.
USGS/SLU Moment Tensor Solution ENS 2012/08/29 12:50:55:0 60.33 -150.74 65.8 4.4 Alaska Stations used: AK.BMR AK.BPAW AK.BRLK AK.CNP AK.DOT AK.FIB AK.FID AK.GHO AK.GLI AK.HIN AK.HOM AK.KNK AK.KTH AK.RC01 AK.RIDG AK.SAW AK.SCM AK.SKN AK.SSN AT.SVW2 II.KDAK IU.COLA Filtering commands used: hp c 0.02 n 3 lp c 0.06 n 3 Best Fitting Double Couple Mo = 7.85e+22 dyne-cm Mw = 4.53 Z = 72 km Plane Strike Dip Rake NP1 281 72 154 NP2 20 65 20 Principal Axes: Axis Value Plunge Azimuth T 7.85e+22 31 239 N 0.00e+00 58 69 P -7.85e+22 5 332 Moment Tensor: (dyne-cm) Component Value Mxx -4.54e+22 Mxy 5.78e+22 Mxz -2.34e+22 Myy 2.48e+22 Myz -2.69e+22 Mzz 2.06e+22 -------------- P ----------------### --- ----------------###### -----------------------####### --------------------------######## ---------------------------######### ---------------------------########### ----------------------------############ -###################--------############ ############################-############# ############################------######## ###########################----------##### ###########################-------------## ###### ################--------------- ###### T ###############---------------- ##### ##############---------------- ####################---------------- ##################---------------- ###############--------------- ############---------------- #######--------------- -------------- Global CMT Convention Moment Tensor: R T P 2.06e+22 -2.34e+22 2.69e+22 -2.34e+22 -4.54e+22 -5.78e+22 2.69e+22 -5.78e+22 2.48e+22 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20120829125055/index.html |
USGS/SLU Regional Moment Solution 12/08/29 12:50:51.00 Epicenter: 60.269 -150.709 MW 4.5 USGS/SLU REGIONAL MOMENT TENSOR Depth 67 No. of sta: 53 Moment Tensor; Scale 10**15 Nm Mrr= 1.50 Mtt=-3.34 Mpp= 1.84 Mrt=-2.69 Mrp= 3.18 Mtp=-4.53 Principal axes: T Val= 7.36 Plg=35 Azm=238 N -1.30 54 72 P -6.06 7 333 Best Double Couple:Mo=6.8*10**15 NP1:Strike= 21 Dip=60 Slip= 22 NP2: 280 71 149 |
Given the availability of digital waveforms for determination of the moment tensor, this section documents the added processing leading to mLg, if appropriate to the region, and ML by application of the respective IASPEI formulae. As a research study, the linear distance term of the IASPEI formula for ML is adjusted to remove a linear distance trend in residuals to give a regionally defined ML. The defined ML uses horizontal component recordings, but the same procedure is applied to the vertical components since there may be some interest in vertical component ground motions. Residual plots versus distance may indicate interesting features of ground motion scaling in some distance ranges. A residual plot of the regionalized magnitude is given as a function of distance and azimuth, since data sets may transcend different wave propagation provinces.
Left: ML computed using the IASPEI formula for Horizontal components. Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
Left: ML computed using the IASPEI formula for Vertical components (research). Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
![]() |
The focal mechanism was determined using broadband seismic waveforms. The location of the event (star) and the stations used for (red) the waveform inversion are shown in the next figure.
![]() |
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green's functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
hp c 0.02 n 3 lp c 0.06 n 3The results of this grid search are as follow:
DEPTH STK DIP RAKE MW FIT WVFGRD96 0.5 10 65 -25 3.66 0.1594 WVFGRD96 1.0 25 85 5 3.66 0.1721 WVFGRD96 2.0 25 75 15 3.79 0.2304 WVFGRD96 3.0 25 65 10 3.85 0.2540 WVFGRD96 4.0 20 65 -5 3.87 0.2769 WVFGRD96 5.0 20 65 -5 3.90 0.2979 WVFGRD96 6.0 20 65 -5 3.93 0.3152 WVFGRD96 7.0 20 70 -5 3.95 0.3303 WVFGRD96 8.0 20 65 -10 3.99 0.3433 WVFGRD96 9.0 20 65 -10 4.00 0.3531 WVFGRD96 10.0 20 65 -10 4.01 0.3605 WVFGRD96 11.0 20 70 -15 4.03 0.3671 WVFGRD96 12.0 20 70 -15 4.05 0.3726 WVFGRD96 13.0 20 70 -15 4.06 0.3768 WVFGRD96 14.0 20 70 -15 4.07 0.3800 WVFGRD96 15.0 20 70 -15 4.08 0.3832 WVFGRD96 16.0 15 70 -20 4.09 0.3869 WVFGRD96 17.0 15 70 -20 4.10 0.3901 WVFGRD96 18.0 15 70 -20 4.11 0.3933 WVFGRD96 19.0 15 70 -20 4.12 0.3967 WVFGRD96 20.0 15 70 -20 4.13 0.3999 WVFGRD96 21.0 15 70 -20 4.14 0.4025 WVFGRD96 22.0 15 70 -15 4.14 0.4049 WVFGRD96 23.0 15 70 -20 4.15 0.4072 WVFGRD96 24.0 15 70 -15 4.16 0.4099 WVFGRD96 25.0 15 70 -15 4.17 0.4122 WVFGRD96 26.0 15 70 -15 4.17 0.4142 WVFGRD96 27.0 15 70 -10 4.18 0.4159 WVFGRD96 28.0 15 70 -10 4.19 0.4174 WVFGRD96 29.0 15 70 -10 4.20 0.4191 WVFGRD96 30.0 15 70 -10 4.20 0.4205 WVFGRD96 31.0 15 70 -10 4.21 0.4215 WVFGRD96 32.0 15 70 -5 4.22 0.4220 WVFGRD96 33.0 15 70 -5 4.23 0.4222 WVFGRD96 34.0 15 70 -5 4.24 0.4221 WVFGRD96 35.0 15 70 0 4.25 0.4233 WVFGRD96 36.0 15 70 0 4.26 0.4248 WVFGRD96 37.0 15 70 0 4.27 0.4264 WVFGRD96 38.0 15 70 0 4.28 0.4276 WVFGRD96 39.0 15 70 0 4.29 0.4286 WVFGRD96 40.0 15 60 5 4.34 0.4301 WVFGRD96 41.0 15 60 5 4.35 0.4306 WVFGRD96 42.0 15 60 5 4.35 0.4310 WVFGRD96 43.0 15 65 5 4.36 0.4315 WVFGRD96 44.0 15 65 5 4.37 0.4321 WVFGRD96 45.0 15 65 10 4.38 0.4328 WVFGRD96 46.0 15 65 10 4.39 0.4335 WVFGRD96 47.0 20 65 15 4.40 0.4346 WVFGRD96 48.0 20 65 15 4.40 0.4363 WVFGRD96 49.0 20 65 20 4.42 0.4389 WVFGRD96 50.0 20 65 20 4.42 0.4423 WVFGRD96 51.0 20 65 20 4.43 0.4455 WVFGRD96 52.0 20 65 20 4.44 0.4484 WVFGRD96 53.0 20 65 20 4.44 0.4514 WVFGRD96 54.0 20 65 20 4.45 0.4546 WVFGRD96 55.0 20 65 20 4.46 0.4574 WVFGRD96 56.0 20 65 20 4.46 0.4599 WVFGRD96 57.0 20 65 20 4.47 0.4627 WVFGRD96 58.0 20 65 20 4.47 0.4656 WVFGRD96 59.0 20 65 20 4.48 0.4680 WVFGRD96 60.0 20 65 20 4.48 0.4695 WVFGRD96 61.0 20 65 20 4.49 0.4713 WVFGRD96 62.0 20 65 20 4.49 0.4737 WVFGRD96 63.0 20 65 20 4.50 0.4749 WVFGRD96 64.0 20 65 20 4.50 0.4761 WVFGRD96 65.0 20 65 20 4.50 0.4775 WVFGRD96 66.0 20 65 20 4.51 0.4784 WVFGRD96 67.0 20 65 20 4.51 0.4794 WVFGRD96 68.0 20 65 20 4.51 0.4795 WVFGRD96 69.0 20 65 20 4.52 0.4804 WVFGRD96 70.0 20 65 20 4.52 0.4809 WVFGRD96 71.0 20 65 20 4.52 0.4803 WVFGRD96 72.0 20 65 20 4.53 0.4811 WVFGRD96 73.0 20 65 20 4.53 0.4805 WVFGRD96 74.0 20 65 20 4.53 0.4802 WVFGRD96 75.0 20 65 20 4.54 0.4802 WVFGRD96 76.0 20 65 20 4.54 0.4786 WVFGRD96 77.0 20 65 20 4.54 0.4789 WVFGRD96 78.0 20 65 20 4.54 0.4777 WVFGRD96 79.0 20 65 20 4.55 0.4768 WVFGRD96 80.0 20 65 20 4.55 0.4758 WVFGRD96 81.0 20 65 20 4.55 0.4743 WVFGRD96 82.0 20 65 20 4.55 0.4735 WVFGRD96 83.0 20 65 20 4.56 0.4716 WVFGRD96 84.0 20 65 20 4.56 0.4708 WVFGRD96 85.0 20 65 20 4.56 0.4689 WVFGRD96 86.0 20 65 20 4.56 0.4676 WVFGRD96 87.0 20 65 20 4.56 0.4661 WVFGRD96 88.0 25 65 20 4.56 0.4643 WVFGRD96 89.0 25 65 20 4.57 0.4632 WVFGRD96 90.0 25 65 20 4.57 0.4616 WVFGRD96 91.0 25 65 20 4.57 0.4603 WVFGRD96 92.0 25 65 20 4.57 0.4587 WVFGRD96 93.0 25 65 20 4.57 0.4571 WVFGRD96 94.0 25 70 20 4.58 0.4556 WVFGRD96 95.0 25 70 20 4.58 0.4543 WVFGRD96 96.0 25 70 20 4.58 0.4531 WVFGRD96 97.0 25 70 20 4.58 0.4516 WVFGRD96 98.0 25 70 20 4.58 0.4505 WVFGRD96 99.0 25 70 20 4.59 0.4490
The best solution is
WVFGRD96 72.0 20 65 20 4.53 0.4811
The mechanism corresponding to the best fit is
![]() |
|
The best fit as a function of depth is given in the following figure:
![]() |
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed, the velocity model used in the predictions may not be perfect and the epicentral parameters may be be off. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
hp c 0.02 n 3 lp c 0.06 n 3
![]() |
Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated. The time scale is relative to the first trace sample. |
![]() |
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to the waveforms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
The WUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows (The format is in the model96 format of Computer Programs in Seismology).
MODEL.01 Model after 8 iterations ISOTROPIC KGS FLAT EARTH 1-D CONSTANT VELOCITY LINE08 LINE09 LINE10 LINE11 H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS 1.9000 3.4065 2.0089 2.2150 0.302E-02 0.679E-02 0.00 0.00 1.00 1.00 6.1000 5.5445 3.2953 2.6089 0.349E-02 0.784E-02 0.00 0.00 1.00 1.00 13.0000 6.2708 3.7396 2.7812 0.212E-02 0.476E-02 0.00 0.00 1.00 1.00 19.0000 6.4075 3.7680 2.8223 0.111E-02 0.249E-02 0.00 0.00 1.00 1.00 0.0000 7.9000 4.6200 3.2760 0.164E-10 0.370E-10 0.00 0.00 1.00 1.00