Location

Location ANSS

The ANSS event ID is ak012awb7szn and the event page is at https://earthquake.usgs.gov/earthquakes/eventpage/ak012awb7szn/executive.

2012/08/24 21:58:09 63.920 -148.396 10.8 3.7 Alaska

Focal Mechanism

 USGS/SLU Moment Tensor Solution
 ENS  2012/08/24 21:58:09:0  63.92 -148.40  10.8 3.7 Alaska
 
 Stations used:
   AK.BAL AK.BPAW AK.BRLK AK.BWN AK.CCB AK.COLD AK.CTG AK.DHY 
   AK.FID AK.FYU AK.GHO AK.GLI AK.GLM AK.HDA AK.HIN AK.HMT 
   AK.KLU AK.KNK AK.KTH AK.MCK AK.MDM AK.MLY AK.NEA AK.PAX 
   AK.PPD AK.PPLA AK.RAG AK.RIDG AK.RND AK.SAW AK.SCM AK.SGA 
   AK.SKN AK.SSN AK.TGL AK.WAX AK.WRH AK.YAH AT.MID AT.SVW2 
   CN.DAWY IU.COLA US.EGAK 
 
 Filtering commands used:
   hp c 0.02 n 3
   lp c 0.06 n 3
 
 Best Fitting Double Couple
  Mo = 6.53e+21 dyne-cm
  Mw = 3.81 
  Z  = 17 km
  Plane   Strike  Dip  Rake
   NP1       82    67   101
   NP2      235    25    65
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   6.53e+21     66      12
    N   0.00e+00     10     258
    P  -6.53e+21     22     164

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx    -4.14e+21
       Mxy     1.73e+21
       Mxz     4.55e+21
       Myy    -3.96e+20
       Myz    -1.33e+20
       Mzz     4.53e+21
                                                     
                                                     
                                                     
                                                     
                     --------------                  
                 ----------------------              
              ----------###############---           
             -------######################-          
           -------###########################        
          ------##############################       
         -----##############   ################      
        -----############### T #################     
        ----################   #################     
       ----######################################    
       ---#####################################--    
       ---##################################-----    
       ---##############################---------    
        ##-#######################--------------     
        ##--------------------------------------     
         #-------------------------------------      
          ------------------------------------       
           ----------------------------------        
             ------------------   ---------          
              ----------------- P --------           
                 --------------   -----              
                     --------------                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
  4.53e+21   4.55e+21   1.33e+20 
  4.55e+21  -4.14e+21  -1.73e+21 
  1.33e+20  -1.73e+21  -3.96e+20 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20120824215809/index.html
        

Preferred Solution

The preferred solution from an analysis of the surface-wave spectral amplitude radiation pattern, waveform inversion or first motion observations is

      STK = 235
      DIP = 25
     RAKE = 65
       MW = 3.81
       HS = 17.0

The NDK file is 20120824215809.ndk The waveform inversion is preferred.

Moment Tensor Comparison

The following compares this source inversion to those provided by others. The purpose is to look for major differences and also to note slight differences that might be inherent to the processing procedure. For completeness the USGS/SLU solution is repeated from above.
SLU
USGSMT
 USGS/SLU Moment Tensor Solution
 ENS  2012/08/24 21:58:09:0  63.92 -148.40  10.8 3.7 Alaska
 
 Stations used:
   AK.BAL AK.BPAW AK.BRLK AK.BWN AK.CCB AK.COLD AK.CTG AK.DHY 
   AK.FID AK.FYU AK.GHO AK.GLI AK.GLM AK.HDA AK.HIN AK.HMT 
   AK.KLU AK.KNK AK.KTH AK.MCK AK.MDM AK.MLY AK.NEA AK.PAX 
   AK.PPD AK.PPLA AK.RAG AK.RIDG AK.RND AK.SAW AK.SCM AK.SGA 
   AK.SKN AK.SSN AK.TGL AK.WAX AK.WRH AK.YAH AT.MID AT.SVW2 
   CN.DAWY IU.COLA US.EGAK 
 
 Filtering commands used:
   hp c 0.02 n 3
   lp c 0.06 n 3
 
 Best Fitting Double Couple
  Mo = 6.53e+21 dyne-cm
  Mw = 3.81 
  Z  = 17 km
  Plane   Strike  Dip  Rake
   NP1       82    67   101
   NP2      235    25    65
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   6.53e+21     66      12
    N   0.00e+00     10     258
    P  -6.53e+21     22     164

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx    -4.14e+21
       Mxy     1.73e+21
       Mxz     4.55e+21
       Myy    -3.96e+20
       Myz    -1.33e+20
       Mzz     4.53e+21
                                                     
                                                     
                                                     
                                                     
                     --------------                  
                 ----------------------              
              ----------###############---           
             -------######################-          
           -------###########################        
          ------##############################       
         -----##############   ################      
        -----############### T #################     
        ----################   #################     
       ----######################################    
       ---#####################################--    
       ---##################################-----    
       ---##############################---------    
        ##-#######################--------------     
        ##--------------------------------------     
         #-------------------------------------      
          ------------------------------------       
           ----------------------------------        
             ------------------   ---------          
              ----------------- P --------           
                 --------------   -----              
                     --------------                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
  4.53e+21   4.55e+21   1.33e+20 
  4.55e+21  -4.14e+21  -1.73e+21 
  1.33e+20  -1.73e+21  -3.96e+20 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20120824215809/index.html
	
NEIC Mwr

Moment
    6.34e+14 N-m
Magnitude
    3.8
Percent DC
    89%
Depth
    14.0 km

Principal Axes
Axis	Value	Plunge	Azimuth
T	6.506	62	11
N	-0.336	15	249
P	-6.170	22	153
Nodal Planes
Plane	Strike	Dip	Rake
NP1	225	34	61
NP2	78	64	118


        

Magnitudes

Given the availability of digital waveforms for determination of the moment tensor, this section documents the added processing leading to mLg, if appropriate to the region, and ML by application of the respective IASPEI formulae. As a research study, the linear distance term of the IASPEI formula for ML is adjusted to remove a linear distance trend in residuals to give a regionally defined ML. The defined ML uses horizontal component recordings, but the same procedure is applied to the vertical components since there may be some interest in vertical component ground motions. Residual plots versus distance may indicate interesting features of ground motion scaling in some distance ranges. A residual plot of the regionalized magnitude is given as a function of distance and azimuth, since data sets may transcend different wave propagation provinces.

ML Magnitude


Left: ML computed using the IASPEI formula for Horizontal components. Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot. Right: Residuals from new relation as a function of distance and azimuth.


Left: ML computed using the IASPEI formula for Vertical components (research). Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot. Right: Residuals from new relation as a function of distance and azimuth.

Context

The left panel of the next figure presents the focal mechanism for this earthquake (red) in the context of other nearby events (blue) in the SLU Moment Tensor Catalog. The right panel shows the inferred direction of maximum compressive stress and the type of faulting (green is strike-slip, red is normal, blue is thrust; oblique is shown by a combination of colors). Thus context plot is useful for assessing the appropriateness of the moment tensor of this event.

Waveform Inversion using wvfgrd96

The focal mechanism was determined using broadband seismic waveforms. The location of the event (star) and the stations used for (red) the waveform inversion are shown in the next figure.
Location of broadband stations used for waveform inversion

The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green's functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.

The observed and predicted traces are filtered using the following gsac commands:

hp c 0.02 n 3
lp c 0.06 n 3
The results of this grid search are as follow:

           DEPTH  STK   DIP  RAKE   MW    FIT
WVFGRD96    0.5   275    40   -90   3.48 0.3569
WVFGRD96    1.0   275    40   -90   3.51 0.3355
WVFGRD96    2.0   115    50   -95   3.60 0.3930
WVFGRD96    3.0   330    55   -30   3.68 0.3515
WVFGRD96    4.0   335    60   -15   3.71 0.3299
WVFGRD96    5.0   175    20    -5   3.68 0.3727
WVFGRD96    6.0   180    20     0   3.68 0.4238
WVFGRD96    7.0   180    25     0   3.68 0.4597
WVFGRD96    8.0   185    20     5   3.75 0.4851
WVFGRD96    9.0   190    20    15   3.75 0.5145
WVFGRD96   10.0   200    20    25   3.75 0.5384
WVFGRD96   11.0   210    20    35   3.76 0.5582
WVFGRD96   12.0   210    25    40   3.77 0.5727
WVFGRD96   13.0   220    25    50   3.78 0.5850
WVFGRD96   14.0   220    25    50   3.79 0.5933
WVFGRD96   15.0   230    25    60   3.80 0.5977
WVFGRD96   16.0   230    25    60   3.80 0.5996
WVFGRD96   17.0   235    25    65   3.81 0.5996
WVFGRD96   18.0   230    25    60   3.81 0.5968
WVFGRD96   19.0   230    25    60   3.81 0.5920
WVFGRD96   20.0   230    25    60   3.81 0.5862
WVFGRD96   21.0   235    25    65   3.83 0.5801
WVFGRD96   22.0   235    25    65   3.83 0.5718
WVFGRD96   23.0   230    25    60   3.83 0.5626
WVFGRD96   24.0   230    25    60   3.84 0.5531
WVFGRD96   25.0   230    25    60   3.84 0.5429
WVFGRD96   26.0   230    25    60   3.84 0.5322
WVFGRD96   27.0   230    25    60   3.85 0.5213
WVFGRD96   28.0   225    25    55   3.85 0.5098
WVFGRD96   29.0   225    25    55   3.85 0.4977

The best solution is

WVFGRD96   17.0   235    25    65   3.81 0.5996

The mechanism corresponding to the best fit is
Figure 1. Waveform inversion focal mechanism

The best fit as a function of depth is given in the following figure:

Figure 2. Depth sensitivity for waveform mechanism

The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed, the velocity model used in the predictions may not be perfect and the epicentral parameters may be be off. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).

The bandpass filter used in the processing and for the display was

hp c 0.02 n 3
lp c 0.06 n 3
Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated. The time scale is relative to the first trace sample.

Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to the waveforms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure.

A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:

Assuming only a mislocation, the time shifts are fit to a functional form:

 Time_shift = A + B cos Azimuth + C Sin Azimuth

The time shifts for this inversion lead to the next figure:

The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.

Velocity Model

The WUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows (The format is in the model96 format of Computer Programs in Seismology).

MODEL.01
Model after     8 iterations
ISOTROPIC
KGS
FLAT EARTH
1-D
CONSTANT VELOCITY
LINE08
LINE09
LINE10
LINE11
      H(KM)   VP(KM/S)   VS(KM/S) RHO(GM/CC)         QP         QS       ETAP       ETAS      FREFP      FREFS
     1.9000     3.4065     2.0089     2.2150  0.302E-02  0.679E-02   0.00       0.00       1.00       1.00    
     6.1000     5.5445     3.2953     2.6089  0.349E-02  0.784E-02   0.00       0.00       1.00       1.00    
    13.0000     6.2708     3.7396     2.7812  0.212E-02  0.476E-02   0.00       0.00       1.00       1.00    
    19.0000     6.4075     3.7680     2.8223  0.111E-02  0.249E-02   0.00       0.00       1.00       1.00    
     0.0000     7.9000     4.6200     3.2760  0.164E-10  0.370E-10   0.00       0.00       1.00       1.00    
Last Changed Fri Apr 26 10:24:06 PM CDT 2024