The ANSS event ID is ak0128tllrpw and the event page is at https://earthquake.usgs.gov/earthquakes/eventpage/ak0128tllrpw/executive.
2012/07/10 04:06:54 63.439 -149.394 104.0 4.2 Alaska
USGS/SLU Moment Tensor Solution ENS 2012/07/10 04:06:54:0 63.44 -149.39 104.0 4.2 Alaska Stations used: AK.BPAW AK.BWN AK.CCB AK.GHO AK.GLM AK.KNK AK.KTH AK.MDM AK.MLY AK.NEA AK.PAX AK.PPLA AK.SAW AK.SCM AK.TRF AK.WRH Filtering commands used: hp c 0.02 n 3 lp c 0.10 n 3 Best Fitting Double Couple Mo = 3.31e+22 dyne-cm Mw = 4.28 Z = 122 km Plane Strike Dip Rake NP1 324 58 138 NP2 80 55 40 Principal Axes: Axis Value Plunge Azimuth T 3.31e+22 51 290 N 0.00e+00 39 114 P -3.31e+22 2 23 Moment Tensor: (dyne-cm) Component Value Mxx -2.65e+22 Mxy -1.61e+22 Mxz 4.64e+21 Myy 6.50e+21 Myz -1.56e+22 Mzz 2.00e+22 ------------ P ---------------- --- #######--------------------- ############------------------ #################----------------- ####################---------------- #######################--------------- #########################--------------- ######### ###############------------- ########## T ################------------# ########## #################----------## ###############################-------#### ################################----###### -##############################--####### ----#########################---######## -------###############---------####### -------------------------------##### ------------------------------#### ----------------------------## --------------------------## ---------------------- -------------- Global CMT Convention Moment Tensor: R T P 2.00e+22 4.64e+21 1.56e+22 4.64e+21 -2.65e+22 1.61e+22 1.56e+22 1.61e+22 6.50e+21 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20120710040654/index.html |
STK = 80 DIP = 55 RAKE = 40 MW = 4.28 HS = 122.0
The NDK file is 20120710040654.ndk The waveform inversion is preferred.
Given the availability of digital waveforms for determination of the moment tensor, this section documents the added processing leading to mLg, if appropriate to the region, and ML by application of the respective IASPEI formulae. As a research study, the linear distance term of the IASPEI formula for ML is adjusted to remove a linear distance trend in residuals to give a regionally defined ML. The defined ML uses horizontal component recordings, but the same procedure is applied to the vertical components since there may be some interest in vertical component ground motions. Residual plots versus distance may indicate interesting features of ground motion scaling in some distance ranges. A residual plot of the regionalized magnitude is given as a function of distance and azimuth, since data sets may transcend different wave propagation provinces.
Left: ML computed using the IASPEI formula for Horizontal components. Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
Left: ML computed using the IASPEI formula for Vertical components (research). Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
![]() |
The focal mechanism was determined using broadband seismic waveforms. The location of the event (star) and the stations used for (red) the waveform inversion are shown in the next figure.
![]() |
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green's functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
hp c 0.02 n 3 lp c 0.10 n 3The results of this grid search are as follow:
DEPTH STK DIP RAKE MW FIT WVFGRD96 0.5 110 50 -90 3.15 0.2028 WVFGRD96 1.0 310 45 -55 3.17 0.1923 WVFGRD96 2.0 295 40 -80 3.35 0.2756 WVFGRD96 3.0 295 40 -75 3.41 0.2676 WVFGRD96 4.0 335 60 -20 3.37 0.2360 WVFGRD96 5.0 170 50 10 3.41 0.2509 WVFGRD96 6.0 170 55 10 3.44 0.2703 WVFGRD96 7.0 165 50 5 3.44 0.2881 WVFGRD96 8.0 165 45 10 3.50 0.3005 WVFGRD96 9.0 165 50 10 3.53 0.3100 WVFGRD96 10.0 180 60 20 3.59 0.3185 WVFGRD96 11.0 180 65 20 3.63 0.3261 WVFGRD96 12.0 180 65 20 3.65 0.3329 WVFGRD96 13.0 180 65 20 3.66 0.3338 WVFGRD96 14.0 180 65 20 3.68 0.3361 WVFGRD96 15.0 180 65 20 3.69 0.3362 WVFGRD96 16.0 180 65 20 3.71 0.3315 WVFGRD96 17.0 185 65 20 3.73 0.3303 WVFGRD96 18.0 185 65 20 3.74 0.3259 WVFGRD96 19.0 185 65 20 3.76 0.3241 WVFGRD96 20.0 185 65 20 3.77 0.3211 WVFGRD96 21.0 190 65 15 3.79 0.3083 WVFGRD96 22.0 190 65 15 3.81 0.3042 WVFGRD96 23.0 190 65 15 3.81 0.2951 WVFGRD96 24.0 190 70 15 3.83 0.2748 WVFGRD96 25.0 190 70 15 3.84 0.2659 WVFGRD96 26.0 240 45 30 3.70 0.2595 WVFGRD96 27.0 240 50 25 3.71 0.2610 WVFGRD96 28.0 240 50 25 3.72 0.2627 WVFGRD96 29.0 240 50 25 3.73 0.2601 WVFGRD96 30.0 0 60 -25 3.83 0.2657 WVFGRD96 31.0 0 60 -25 3.84 0.2746 WVFGRD96 32.0 0 60 -25 3.86 0.2818 WVFGRD96 33.0 0 60 -25 3.87 0.2872 WVFGRD96 34.0 0 60 -20 3.88 0.2929 WVFGRD96 35.0 0 65 -20 3.92 0.2991 WVFGRD96 36.0 5 70 -15 3.95 0.3068 WVFGRD96 37.0 5 70 -10 3.97 0.3166 WVFGRD96 38.0 5 75 -5 4.01 0.3277 WVFGRD96 39.0 5 75 -5 4.03 0.3412 WVFGRD96 40.0 5 70 -10 4.08 0.3573 WVFGRD96 41.0 5 70 -5 4.10 0.3644 WVFGRD96 42.0 5 70 -5 4.11 0.3702 WVFGRD96 43.0 5 65 -5 4.11 0.3761 WVFGRD96 44.0 5 65 -5 4.12 0.3827 WVFGRD96 45.0 5 65 -5 4.13 0.3883 WVFGRD96 46.0 5 65 -5 4.14 0.3934 WVFGRD96 47.0 5 65 -5 4.15 0.3970 WVFGRD96 48.0 5 65 -5 4.16 0.3995 WVFGRD96 49.0 5 60 -5 4.14 0.4017 WVFGRD96 50.0 10 65 15 4.16 0.4059 WVFGRD96 51.0 10 65 15 4.17 0.4103 WVFGRD96 52.0 15 60 25 4.15 0.4165 WVFGRD96 53.0 15 60 25 4.15 0.4216 WVFGRD96 54.0 15 60 25 4.16 0.4257 WVFGRD96 55.0 15 65 25 4.19 0.4286 WVFGRD96 56.0 80 85 -30 4.15 0.4346 WVFGRD96 57.0 260 90 30 4.14 0.4373 WVFGRD96 58.0 80 85 -30 4.15 0.4484 WVFGRD96 59.0 80 85 -30 4.16 0.4541 WVFGRD96 60.0 260 90 30 4.15 0.4569 WVFGRD96 61.0 80 85 -30 4.16 0.4635 WVFGRD96 62.0 80 45 45 4.13 0.4787 WVFGRD96 63.0 80 45 45 4.13 0.4917 WVFGRD96 64.0 80 45 45 4.13 0.5028 WVFGRD96 65.0 80 45 40 4.15 0.5143 WVFGRD96 66.0 80 50 40 4.16 0.5247 WVFGRD96 67.0 80 50 40 4.16 0.5355 WVFGRD96 68.0 80 50 40 4.17 0.5455 WVFGRD96 69.0 80 50 40 4.17 0.5545 WVFGRD96 70.0 75 50 35 4.17 0.5624 WVFGRD96 71.0 75 50 35 4.17 0.5703 WVFGRD96 72.0 80 50 40 4.18 0.5769 WVFGRD96 73.0 80 50 40 4.18 0.5855 WVFGRD96 74.0 75 50 35 4.18 0.5918 WVFGRD96 75.0 75 50 35 4.18 0.5982 WVFGRD96 76.0 75 50 35 4.18 0.6048 WVFGRD96 77.0 75 50 35 4.18 0.6104 WVFGRD96 78.0 75 50 35 4.19 0.6170 WVFGRD96 79.0 75 50 35 4.19 0.6215 WVFGRD96 80.0 75 50 35 4.19 0.6276 WVFGRD96 81.0 75 50 35 4.20 0.6323 WVFGRD96 82.0 75 50 35 4.20 0.6388 WVFGRD96 83.0 75 50 35 4.20 0.6414 WVFGRD96 84.0 75 50 35 4.20 0.6473 WVFGRD96 85.0 75 50 35 4.21 0.6517 WVFGRD96 86.0 75 50 35 4.21 0.6564 WVFGRD96 87.0 75 50 40 4.20 0.6591 WVFGRD96 88.0 75 50 40 4.20 0.6657 WVFGRD96 89.0 75 50 40 4.21 0.6697 WVFGRD96 90.0 75 50 40 4.21 0.6734 WVFGRD96 91.0 75 50 40 4.21 0.6784 WVFGRD96 92.0 75 50 40 4.21 0.6816 WVFGRD96 93.0 75 50 40 4.22 0.6854 WVFGRD96 94.0 75 50 40 4.22 0.6889 WVFGRD96 95.0 75 50 40 4.22 0.6924 WVFGRD96 96.0 75 50 40 4.22 0.6945 WVFGRD96 97.0 75 50 40 4.23 0.6997 WVFGRD96 98.0 75 50 40 4.23 0.6995 WVFGRD96 99.0 75 50 40 4.23 0.7037 WVFGRD96 100.0 75 50 40 4.23 0.7063 WVFGRD96 101.0 75 50 40 4.23 0.7071 WVFGRD96 102.0 75 50 40 4.24 0.7103 WVFGRD96 103.0 75 50 40 4.24 0.7112 WVFGRD96 104.0 75 50 40 4.24 0.7131 WVFGRD96 105.0 75 50 40 4.24 0.7134 WVFGRD96 106.0 75 50 40 4.24 0.7161 WVFGRD96 107.0 75 50 40 4.24 0.7158 WVFGRD96 108.0 80 55 40 4.26 0.7188 WVFGRD96 109.0 80 55 40 4.26 0.7196 WVFGRD96 110.0 80 55 40 4.26 0.7201 WVFGRD96 111.0 80 55 40 4.26 0.7223 WVFGRD96 112.0 80 55 40 4.26 0.7219 WVFGRD96 113.0 80 55 40 4.27 0.7227 WVFGRD96 114.0 80 55 40 4.27 0.7242 WVFGRD96 115.0 80 55 40 4.27 0.7236 WVFGRD96 116.0 80 55 40 4.27 0.7248 WVFGRD96 117.0 80 55 40 4.27 0.7259 WVFGRD96 118.0 80 55 40 4.27 0.7243 WVFGRD96 119.0 80 55 40 4.27 0.7264 WVFGRD96 120.0 80 55 40 4.27 0.7266 WVFGRD96 121.0 80 55 40 4.27 0.7257 WVFGRD96 122.0 80 55 40 4.28 0.7272 WVFGRD96 123.0 80 55 40 4.28 0.7255 WVFGRD96 124.0 80 55 40 4.28 0.7266 WVFGRD96 125.0 80 55 40 4.28 0.7264 WVFGRD96 126.0 80 55 40 4.28 0.7269 WVFGRD96 127.0 80 55 40 4.28 0.7256 WVFGRD96 128.0 80 55 40 4.28 0.7256 WVFGRD96 129.0 80 55 40 4.28 0.7258
The best solution is
WVFGRD96 122.0 80 55 40 4.28 0.7272
The mechanism corresponding to the best fit is
![]() |
|
The best fit as a function of depth is given in the following figure:
![]() |
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed, the velocity model used in the predictions may not be perfect and the epicentral parameters may be be off. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
hp c 0.02 n 3 lp c 0.10 n 3
![]() |
Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated. The time scale is relative to the first trace sample. |
![]() |
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to the waveforms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
The WUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows (The format is in the model96 format of Computer Programs in Seismology).
MODEL.01 Model after 8 iterations ISOTROPIC KGS FLAT EARTH 1-D CONSTANT VELOCITY LINE08 LINE09 LINE10 LINE11 H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS 1.9000 3.4065 2.0089 2.2150 0.302E-02 0.679E-02 0.00 0.00 1.00 1.00 6.1000 5.5445 3.2953 2.6089 0.349E-02 0.784E-02 0.00 0.00 1.00 1.00 13.0000 6.2708 3.7396 2.7812 0.212E-02 0.476E-02 0.00 0.00 1.00 1.00 19.0000 6.4075 3.7680 2.8223 0.111E-02 0.249E-02 0.00 0.00 1.00 1.00 0.0000 7.9000 4.6200 3.2760 0.164E-10 0.370E-10 0.00 0.00 1.00 1.00