Location

Location ANSS

The ANSS event ID is ak0128mxrejd and the event page is at https://earthquake.usgs.gov/earthquakes/eventpage/ak0128mxrejd/executive.

2012/07/06 01:22:04 61.677 -151.274 84.8 4.7 Alaska

Focal Mechanism

 USGS/SLU Moment Tensor Solution
 ENS  2012/07/06 01:22:04:0  61.68 -151.27  84.8 4.7 Alaska
 
 Stations used:
   AK.BRLK AK.CNP AK.FIB AK.GHO AK.HOM AK.PPLA AK.RC01 AK.SAW 
   AK.SCM AK.SKN AK.SSN AT.PMR 
 
 Filtering commands used:
   hp c 0.02 n 3
   lp c 0.06 n 3
 
 Best Fitting Double Couple
  Mo = 1.19e+23 dyne-cm
  Mw = 4.65 
  Z  = 87 km
  Plane   Strike  Dip  Rake
   NP1       65    65    40
   NP2      315    54   149
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   1.19e+23     45     285
    N   0.00e+00     44      92
    P  -1.19e+23      6     188

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx    -1.11e+23
       Mxy    -3.06e+22
       Mxz     2.82e+22
       Myy     5.28e+22
       Myz    -5.56e+22
       Mzz     5.85e+22
                                                     
                                                     
                                                     
                                                     
                     --------------                  
                 ----------------------              
              ----------------------------           
             ##########--------------------          
           ################------------------        
          ####################----------------       
         #######################---------------      
        ##########################------------##     
        ########   #################--------####     
       ######### T ##################------######    
       #########   ####################--########    
       ################################-#########    
       #############################-----########    
        #########################--------#######     
        #####################-------------######     
         ###############-------------------####      
          ---------------------------------###       
           --------------------------------##        
             ------------------------------          
              ----------------------------           
                 -------   ------------              
                     --- P --------                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
  5.85e+22   2.82e+22   5.56e+22 
  2.82e+22  -1.11e+23   3.06e+22 
  5.56e+22   3.06e+22   5.28e+22 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20120706012204/index.html
        

Preferred Solution

The preferred solution from an analysis of the surface-wave spectral amplitude radiation pattern, waveform inversion or first motion observations is

      STK = 65
      DIP = 65
     RAKE = 40
       MW = 4.65
       HS = 87.0

The NDK file is 20120706012204.ndk The waveform inversion is preferred.

Magnitudes

Given the availability of digital waveforms for determination of the moment tensor, this section documents the added processing leading to mLg, if appropriate to the region, and ML by application of the respective IASPEI formulae. As a research study, the linear distance term of the IASPEI formula for ML is adjusted to remove a linear distance trend in residuals to give a regionally defined ML. The defined ML uses horizontal component recordings, but the same procedure is applied to the vertical components since there may be some interest in vertical component ground motions. Residual plots versus distance may indicate interesting features of ground motion scaling in some distance ranges. A residual plot of the regionalized magnitude is given as a function of distance and azimuth, since data sets may transcend different wave propagation provinces.

ML Magnitude


Left: ML computed using the IASPEI formula for Horizontal components. Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot. Right: Residuals from new relation as a function of distance and azimuth.


Left: ML computed using the IASPEI formula for Vertical components (research). Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot. Right: Residuals from new relation as a function of distance and azimuth.

Context

The left panel of the next figure presents the focal mechanism for this earthquake (red) in the context of other nearby events (blue) in the SLU Moment Tensor Catalog. The right panel shows the inferred direction of maximum compressive stress and the type of faulting (green is strike-slip, red is normal, blue is thrust; oblique is shown by a combination of colors). Thus context plot is useful for assessing the appropriateness of the moment tensor of this event.

Waveform Inversion using wvfgrd96

The focal mechanism was determined using broadband seismic waveforms. The location of the event (star) and the stations used for (red) the waveform inversion are shown in the next figure.
Location of broadband stations used for waveform inversion

The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green's functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.

The observed and predicted traces are filtered using the following gsac commands:

hp c 0.02 n 3
lp c 0.06 n 3
The results of this grid search are as follow:

           DEPTH  STK   DIP  RAKE   MW    FIT
WVFGRD96    0.5    85    40    65   3.82 0.1913
WVFGRD96    1.0    60    80    15   3.75 0.1967
WVFGRD96    2.0    55    90    20   3.87 0.2726
WVFGRD96    3.0    35    70    25   3.93 0.3091
WVFGRD96    4.0    35    75    20   3.95 0.3325
WVFGRD96    5.0    40    90    25   3.98 0.3553
WVFGRD96    6.0    45    85    25   4.01 0.3774
WVFGRD96    7.0    45    85    25   4.03 0.3961
WVFGRD96    8.0    45    85    25   4.07 0.4113
WVFGRD96    9.0   225    90   -25   4.08 0.4211
WVFGRD96   10.0   235    90   -25   4.12 0.4338
WVFGRD96   11.0    55    85    25   4.13 0.4481
WVFGRD96   12.0    55    85    25   4.14 0.4584
WVFGRD96   13.0    55    90    25   4.15 0.4666
WVFGRD96   14.0    55    90    25   4.16 0.4732
WVFGRD96   15.0    55    90    20   4.18 0.4796
WVFGRD96   16.0    55    90    20   4.19 0.4847
WVFGRD96   17.0    55    90    20   4.19 0.4889
WVFGRD96   18.0    55    90    20   4.20 0.4935
WVFGRD96   19.0    60    85    20   4.22 0.4971
WVFGRD96   20.0    60    85    20   4.23 0.5011
WVFGRD96   21.0   240    90   -20   4.24 0.5025
WVFGRD96   22.0    60    85    20   4.25 0.5068
WVFGRD96   23.0   240    90   -20   4.26 0.5083
WVFGRD96   24.0   240    90   -20   4.27 0.5105
WVFGRD96   25.0    60    85    20   4.27 0.5145
WVFGRD96   26.0   240    90   -20   4.28 0.5151
WVFGRD96   27.0    60    85    20   4.28 0.5181
WVFGRD96   28.0    60    85    20   4.29 0.5196
WVFGRD96   29.0    60    85    20   4.30 0.5210
WVFGRD96   30.0   240    90   -20   4.31 0.5220
WVFGRD96   31.0   240    90   -20   4.32 0.5228
WVFGRD96   32.0   240    90   -20   4.33 0.5236
WVFGRD96   33.0   240    90   -20   4.34 0.5246
WVFGRD96   34.0    60    90    20   4.34 0.5250
WVFGRD96   35.0    60    90    20   4.35 0.5250
WVFGRD96   36.0    60    90    20   4.36 0.5245
WVFGRD96   37.0   240    90   -20   4.38 0.5240
WVFGRD96   38.0   240    90   -20   4.39 0.5231
WVFGRD96   39.0    60    90    20   4.40 0.5222
WVFGRD96   40.0    60    90    30   4.45 0.5226
WVFGRD96   41.0   240    90   -25   4.46 0.5189
WVFGRD96   42.0    60    90    25   4.46 0.5159
WVFGRD96   43.0    60    90    25   4.47 0.5132
WVFGRD96   44.0    60    85    30   4.47 0.5106
WVFGRD96   45.0    60    85    30   4.48 0.5084
WVFGRD96   46.0    60    85    30   4.48 0.5066
WVFGRD96   47.0    60    85    30   4.49 0.5057
WVFGRD96   48.0    60    85    30   4.50 0.5054
WVFGRD96   49.0    60    85    30   4.50 0.5049
WVFGRD96   50.0    65    65    35   4.50 0.5079
WVFGRD96   51.0    65    65    35   4.51 0.5120
WVFGRD96   52.0    65    65    35   4.51 0.5158
WVFGRD96   53.0    65    65    35   4.52 0.5199
WVFGRD96   54.0    65    65    35   4.53 0.5251
WVFGRD96   55.0    65    65    35   4.53 0.5308
WVFGRD96   56.0    65    65    35   4.54 0.5360
WVFGRD96   57.0    65    65    35   4.54 0.5408
WVFGRD96   58.0    65    65    35   4.55 0.5466
WVFGRD96   59.0    65    65    35   4.55 0.5515
WVFGRD96   60.0    65    65    35   4.56 0.5558
WVFGRD96   61.0    65    65    35   4.56 0.5607
WVFGRD96   62.0    65    65    35   4.57 0.5652
WVFGRD96   63.0    65    65    35   4.57 0.5689
WVFGRD96   64.0    65    65    35   4.58 0.5733
WVFGRD96   65.0    70    60    40   4.58 0.5764
WVFGRD96   66.0    65    65    35   4.58 0.5804
WVFGRD96   67.0    65    65    40   4.59 0.5838
WVFGRD96   68.0    65    65    40   4.59 0.5861
WVFGRD96   69.0    65    65    40   4.60 0.5897
WVFGRD96   70.0    65    65    40   4.60 0.5922
WVFGRD96   71.0    65    65    40   4.60 0.5951
WVFGRD96   72.0    65    65    40   4.61 0.5970
WVFGRD96   73.0    65    65    40   4.61 0.5993
WVFGRD96   74.0    65    65    40   4.61 0.6011
WVFGRD96   75.0    65    65    40   4.62 0.6031
WVFGRD96   76.0    65    65    40   4.62 0.6044
WVFGRD96   77.0    65    65    40   4.62 0.6057
WVFGRD96   78.0    65    65    40   4.63 0.6073
WVFGRD96   79.0    65    65    40   4.63 0.6081
WVFGRD96   80.0    65    65    40   4.63 0.6088
WVFGRD96   81.0    65    65    40   4.64 0.6097
WVFGRD96   82.0    65    65    40   4.64 0.6104
WVFGRD96   83.0    65    65    40   4.64 0.6113
WVFGRD96   84.0    65    65    40   4.65 0.6110
WVFGRD96   85.0    65    65    40   4.65 0.6122
WVFGRD96   86.0    65    65    40   4.65 0.6117
WVFGRD96   87.0    65    65    40   4.65 0.6127
WVFGRD96   88.0    65    65    40   4.66 0.6120
WVFGRD96   89.0    65    65    40   4.66 0.6124
WVFGRD96   90.0    65    65    40   4.66 0.6124
WVFGRD96   91.0    65    65    40   4.67 0.6121
WVFGRD96   92.0    65    65    40   4.67 0.6117
WVFGRD96   93.0    65    65    40   4.67 0.6104
WVFGRD96   94.0    65    65    40   4.67 0.6109
WVFGRD96   95.0    65    65    40   4.68 0.6098
WVFGRD96   96.0    65    65    40   4.68 0.6093
WVFGRD96   97.0    65    65    40   4.68 0.6081
WVFGRD96   98.0    65    65    40   4.68 0.6070
WVFGRD96   99.0    65    65    40   4.69 0.6067
WVFGRD96  100.0    65    65    40   4.69 0.6053
WVFGRD96  101.0    65    65    40   4.69 0.6039
WVFGRD96  102.0    65    65    40   4.69 0.6029
WVFGRD96  103.0    65    65    40   4.70 0.6013
WVFGRD96  104.0    65    65    40   4.70 0.6001
WVFGRD96  105.0    65    65    40   4.70 0.5989
WVFGRD96  106.0    65    65    40   4.70 0.5961
WVFGRD96  107.0    65    65    40   4.70 0.5956
WVFGRD96  108.0    65    65    40   4.71 0.5939
WVFGRD96  109.0    65    65    40   4.71 0.5917
WVFGRD96  110.0    65    65    40   4.71 0.5904
WVFGRD96  111.0    65    65    40   4.71 0.5878
WVFGRD96  112.0    65    65    40   4.71 0.5861
WVFGRD96  113.0    65    65    40   4.72 0.5843
WVFGRD96  114.0    65    65    40   4.72 0.5821
WVFGRD96  115.0    65    65    40   4.72 0.5795
WVFGRD96  116.0    65    65    40   4.72 0.5777
WVFGRD96  117.0    65    65    40   4.72 0.5754
WVFGRD96  118.0    65    60    40   4.71 0.5733
WVFGRD96  119.0    65    60    40   4.72 0.5722
WVFGRD96  120.0    65    60    40   4.72 0.5697
WVFGRD96  121.0    65    60    40   4.72 0.5673
WVFGRD96  122.0    65    60    40   4.72 0.5660
WVFGRD96  123.0    65    60    40   4.72 0.5637
WVFGRD96  124.0    65    60    40   4.73 0.5611
WVFGRD96  125.0    65    60    40   4.73 0.5595
WVFGRD96  126.0    65    60    40   4.73 0.5568
WVFGRD96  127.0    65    60    40   4.73 0.5544
WVFGRD96  128.0    65    60    40   4.73 0.5520
WVFGRD96  129.0    65    60    40   4.73 0.5503

The best solution is

WVFGRD96   87.0    65    65    40   4.65 0.6127

The mechanism corresponding to the best fit is
Figure 1. Waveform inversion focal mechanism

The best fit as a function of depth is given in the following figure:

Figure 2. Depth sensitivity for waveform mechanism

The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed, the velocity model used in the predictions may not be perfect and the epicentral parameters may be be off. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).

The bandpass filter used in the processing and for the display was

hp c 0.02 n 3
lp c 0.06 n 3
Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated. The time scale is relative to the first trace sample.

Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to the waveforms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure.

A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:

Assuming only a mislocation, the time shifts are fit to a functional form:

 Time_shift = A + B cos Azimuth + C Sin Azimuth

The time shifts for this inversion lead to the next figure:

The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.

Velocity Model

The WUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows (The format is in the model96 format of Computer Programs in Seismology).

MODEL.01
Model after     8 iterations
ISOTROPIC
KGS
FLAT EARTH
1-D
CONSTANT VELOCITY
LINE08
LINE09
LINE10
LINE11
      H(KM)   VP(KM/S)   VS(KM/S) RHO(GM/CC)         QP         QS       ETAP       ETAS      FREFP      FREFS
     1.9000     3.4065     2.0089     2.2150  0.302E-02  0.679E-02   0.00       0.00       1.00       1.00    
     6.1000     5.5445     3.2953     2.6089  0.349E-02  0.784E-02   0.00       0.00       1.00       1.00    
    13.0000     6.2708     3.7396     2.7812  0.212E-02  0.476E-02   0.00       0.00       1.00       1.00    
    19.0000     6.4075     3.7680     2.8223  0.111E-02  0.249E-02   0.00       0.00       1.00       1.00    
     0.0000     7.9000     4.6200     3.2760  0.164E-10  0.370E-10   0.00       0.00       1.00       1.00    
Last Changed Fri Apr 26 09:40:55 PM CDT 2024