Location

Location ANSS

The ANSS event ID is ak01289s26wj and the event page is at https://earthquake.usgs.gov/earthquakes/eventpage/ak01289s26wj/executive.

2012/06/28 05:58:57 62.465 -148.315 56.4 3.5 Alaska

Focal Mechanism

 USGS/SLU Moment Tensor Solution
 ENS  2012/06/28 05:58:57:0  62.47 -148.32  56.4 3.5 Alaska
 
 Stations used:
   AK.BWN AK.DHY AK.KTH AK.PPLA AK.SAW AK.TRF AT.PMR 
 
 Filtering commands used:
   hp c 0.025 n 3
   lp c 0.10 n 3
 
 Best Fitting Double Couple
  Mo = 4.47e+21 dyne-cm
  Mw = 3.70 
  Z  = 79 km
  Plane   Strike  Dip  Rake
   NP1      214    55   -93
   NP2       40    35   -85
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   4.47e+21     10     306
    N   0.00e+00      3     216
    P  -4.47e+21     79     110

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx     1.51e+21
       Mxy    -2.02e+21
       Mxz     7.34e+20
       Myy     2.67e+21
       Myz    -1.37e+21
       Mzz    -4.18e+21
                                                     
                                                     
                                                     
                                                     
                     ##############                  
                 ######################              
              ###################--------#           
               ###############------------#          
           # T ############----------------##        
          ##   ##########-------------------##       
         ##############---------------------###      
        ##############----------------------####     
        #############-----------------------####     
       ############-------------------------#####    
       ###########-----------   -----------######    
       ###########----------- P -----------######    
       ##########------------   ----------#######    
        ########-------------------------#######     
        ########------------------------########     
         #######-----------------------########      
          #####----------------------#########       
           ####--------------------##########        
             ###----------------###########          
              ##-------------#############           
                 ######################              
                     ##############                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
 -4.18e+21   7.34e+20   1.37e+21 
  7.34e+20   1.51e+21   2.02e+21 
  1.37e+21   2.02e+21   2.67e+21 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20120628055857/index.html
        

Preferred Solution

The preferred solution from an analysis of the surface-wave spectral amplitude radiation pattern, waveform inversion or first motion observations is

      STK = 40
      DIP = 35
     RAKE = -85
       MW = 3.70
       HS = 79.0

The NDK file is 20120628055857.ndk The waveform inversion is preferred.

Magnitudes

Given the availability of digital waveforms for determination of the moment tensor, this section documents the added processing leading to mLg, if appropriate to the region, and ML by application of the respective IASPEI formulae. As a research study, the linear distance term of the IASPEI formula for ML is adjusted to remove a linear distance trend in residuals to give a regionally defined ML. The defined ML uses horizontal component recordings, but the same procedure is applied to the vertical components since there may be some interest in vertical component ground motions. Residual plots versus distance may indicate interesting features of ground motion scaling in some distance ranges. A residual plot of the regionalized magnitude is given as a function of distance and azimuth, since data sets may transcend different wave propagation provinces.

ML Magnitude


Left: ML computed using the IASPEI formula for Horizontal components. Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot. Right: Residuals from new relation as a function of distance and azimuth.


Left: ML computed using the IASPEI formula for Vertical components (research). Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot. Right: Residuals from new relation as a function of distance and azimuth.

Context

The left panel of the next figure presents the focal mechanism for this earthquake (red) in the context of other nearby events (blue) in the SLU Moment Tensor Catalog. The right panel shows the inferred direction of maximum compressive stress and the type of faulting (green is strike-slip, red is normal, blue is thrust; oblique is shown by a combination of colors). Thus context plot is useful for assessing the appropriateness of the moment tensor of this event.

Waveform Inversion using wvfgrd96

The focal mechanism was determined using broadband seismic waveforms. The location of the event (star) and the stations used for (red) the waveform inversion are shown in the next figure.
Location of broadband stations used for waveform inversion

The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green's functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.

The observed and predicted traces are filtered using the following gsac commands:

hp c 0.025 n 3
lp c 0.10 n 3
The results of this grid search are as follow:

           DEPTH  STK   DIP  RAKE   MW    FIT
WVFGRD96    0.5    90    45    85   2.63 0.1827
WVFGRD96    1.0    65    90     0   2.77 0.1968
WVFGRD96    2.0   245    90     0   2.90 0.2308
WVFGRD96    3.0   245    90     0   3.02 0.2407
WVFGRD96    4.0    60    70   -15   3.01 0.2082
WVFGRD96    5.0    60    70   -20   3.03 0.2236
WVFGRD96    6.0    60    70   -15   3.07 0.2467
WVFGRD96    7.0    60    70   -15   3.09 0.2648
WVFGRD96    8.0    60    65   -15   3.16 0.2818
WVFGRD96    9.0   200    35    20   2.97 0.2888
WVFGRD96   10.0   195    40    15   3.00 0.2998
WVFGRD96   11.0   190    45     5   3.02 0.3048
WVFGRD96   12.0   180    50    -5   3.05 0.3129
WVFGRD96   13.0   180    50    -5   3.06 0.3104
WVFGRD96   14.0   180    50    -5   3.08 0.3129
WVFGRD96   15.0   180    50    -5   3.09 0.3125
WVFGRD96   16.0   145    60    40   3.15 0.3016
WVFGRD96   17.0   145    60    40   3.17 0.3022
WVFGRD96   18.0   145    55    45   3.17 0.3020
WVFGRD96   19.0   140    55    45   3.18 0.3041
WVFGRD96   20.0   135    55    45   3.18 0.3051
WVFGRD96   21.0   135    55    45   3.20 0.3065
WVFGRD96   22.0   135    55    45   3.22 0.3059
WVFGRD96   23.0   120    60    40   3.22 0.3074
WVFGRD96   24.0   285    60   -50   3.20 0.3085
WVFGRD96   25.0   280    60   -50   3.21 0.3083
WVFGRD96   26.0   280    65   -50   3.22 0.3057
WVFGRD96   27.0   120    65    35   3.25 0.3106
WVFGRD96   28.0   120    65    35   3.26 0.3156
WVFGRD96   29.0   110    70    35   3.27 0.3186
WVFGRD96   30.0   140    60    45   3.30 0.3199
WVFGRD96   31.0   140    60    45   3.31 0.3245
WVFGRD96   32.0   145    65    35   3.34 0.3285
WVFGRD96   33.0   270    70   -40   3.30 0.3326
WVFGRD96   34.0   275    70   -45   3.30 0.3432
WVFGRD96   35.0   265    65   -45   3.33 0.3548
WVFGRD96   36.0   265    65   -45   3.35 0.3647
WVFGRD96   37.0   265    65   -45   3.36 0.3741
WVFGRD96   38.0   265    65   -45   3.37 0.3809
WVFGRD96   39.0   265    60   -45   3.39 0.3890
WVFGRD96   40.0   255    60   -55   3.51 0.4159
WVFGRD96   41.0   255    60   -55   3.52 0.4153
WVFGRD96   42.0   260    65   -45   3.52 0.4110
WVFGRD96   43.0   260    65   -45   3.53 0.4104
WVFGRD96   44.0   260    65   -45   3.54 0.4085
WVFGRD96   45.0   260    65   -45   3.55 0.4070
WVFGRD96   46.0   135    35   -10   3.57 0.4137
WVFGRD96   47.0   120    25   -30   3.57 0.4278
WVFGRD96   48.0   100    20   -50   3.57 0.4413
WVFGRD96   49.0   100    20   -50   3.57 0.4534
WVFGRD96   50.0   245    70   -85   3.57 0.4644
WVFGRD96   51.0   260    75   -55   3.57 0.4750
WVFGRD96   52.0   260    75   -55   3.58 0.4857
WVFGRD96   53.0   260    75   -55   3.58 0.4954
WVFGRD96   54.0   260    75   -50   3.60 0.5025
WVFGRD96   55.0   260    75   -50   3.60 0.5089
WVFGRD96   56.0   225    55   -90   3.66 0.5233
WVFGRD96   57.0   225    55   -90   3.66 0.5321
WVFGRD96   58.0   225    55   -90   3.66 0.5399
WVFGRD96   59.0   225    55   -90   3.66 0.5465
WVFGRD96   60.0   225    55   -90   3.66 0.5508
WVFGRD96   61.0   225    55   -90   3.66 0.5562
WVFGRD96   62.0   225    55   -90   3.66 0.5601
WVFGRD96   63.0   225    55   -90   3.66 0.5646
WVFGRD96   64.0   225    55   -90   3.65 0.5671
WVFGRD96   65.0   225    55   -90   3.65 0.5699
WVFGRD96   66.0   220    55   -90   3.67 0.5721
WVFGRD96   67.0   220    55   -90   3.67 0.5748
WVFGRD96   68.0   220    55   -90   3.67 0.5785
WVFGRD96   69.0   220    55   -90   3.67 0.5807
WVFGRD96   70.0   220    55   -90   3.67 0.5824
WVFGRD96   71.0   220    55   -90   3.67 0.5843
WVFGRD96   72.0   220    55   -90   3.67 0.5848
WVFGRD96   73.0   220    55   -90   3.68 0.5875
WVFGRD96   74.0   220    55   -90   3.68 0.5888
WVFGRD96   75.0   220    55   -90   3.68 0.5891
WVFGRD96   76.0    40    35   -90   3.68 0.5895
WVFGRD96   77.0   220    55   -90   3.68 0.5911
WVFGRD96   78.0   225    50   -85   3.69 0.5896
WVFGRD96   79.0    40    35   -85   3.70 0.5913
WVFGRD96   80.0    40    35   -85   3.70 0.5891
WVFGRD96   81.0    35    40  -100   3.69 0.5912
WVFGRD96   82.0    35    40  -100   3.70 0.5887
WVFGRD96   83.0   220    50   -90   3.70 0.5880
WVFGRD96   84.0    35    40  -100   3.70 0.5863
WVFGRD96   85.0   220    50   -90   3.71 0.5857
WVFGRD96   86.0    35    40  -100   3.70 0.5842
WVFGRD96   87.0   220    50   -90   3.71 0.5827
WVFGRD96   88.0    40    40   -90   3.71 0.5813
WVFGRD96   89.0    40    40   -90   3.71 0.5808

The best solution is

WVFGRD96   79.0    40    35   -85   3.70 0.5913

The mechanism corresponding to the best fit is
Figure 1. Waveform inversion focal mechanism

The best fit as a function of depth is given in the following figure:

Figure 2. Depth sensitivity for waveform mechanism

The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed, the velocity model used in the predictions may not be perfect and the epicentral parameters may be be off. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).

The bandpass filter used in the processing and for the display was

hp c 0.025 n 3
lp c 0.10 n 3
Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated. The time scale is relative to the first trace sample.

Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to the waveforms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure.

A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:

Assuming only a mislocation, the time shifts are fit to a functional form:

 Time_shift = A + B cos Azimuth + C Sin Azimuth

The time shifts for this inversion lead to the next figure:

The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.

Velocity Model

The WUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows (The format is in the model96 format of Computer Programs in Seismology).

MODEL.01
Model after     8 iterations
ISOTROPIC
KGS
FLAT EARTH
1-D
CONSTANT VELOCITY
LINE08
LINE09
LINE10
LINE11
      H(KM)   VP(KM/S)   VS(KM/S) RHO(GM/CC)         QP         QS       ETAP       ETAS      FREFP      FREFS
     1.9000     3.4065     2.0089     2.2150  0.302E-02  0.679E-02   0.00       0.00       1.00       1.00    
     6.1000     5.5445     3.2953     2.6089  0.349E-02  0.784E-02   0.00       0.00       1.00       1.00    
    13.0000     6.2708     3.7396     2.7812  0.212E-02  0.476E-02   0.00       0.00       1.00       1.00    
    19.0000     6.4075     3.7680     2.8223  0.111E-02  0.249E-02   0.00       0.00       1.00       1.00    
     0.0000     7.9000     4.6200     3.2760  0.164E-10  0.370E-10   0.00       0.00       1.00       1.00    
Last Changed Fri Apr 26 09:30:48 PM CDT 2024