The ANSS event ID is ak0127cwv72m and the event page is at https://earthquake.usgs.gov/earthquakes/eventpage/ak0127cwv72m/executive.
2012/06/08 18:27:36 62.226 -147.875 40.4 4.2 Alaska
USGS/SLU Moment Tensor Solution ENS 2012/06/08 18:27:36:0 62.23 -147.88 40.4 4.2 Alaska Stations used: AK.BAL AK.BMR AK.BWN AK.CCB AK.COLD AK.CRQ AK.CTG AK.DHY AK.DIV AK.FYU AK.GHO AK.GLM AK.HDA AK.KLU AK.KNK AK.KTH AK.MCK AK.MDM AK.MLY AK.PAX AK.PPD AK.PPLA AK.RAG AK.RIDG AK.RND AK.SAW AK.SCM AK.SCRK AK.TGL AK.TRF AK.WRH AT.PMR CN.DAWY IU.COLA US.EGAK Filtering commands used: hp c 0.02 n 3 lp c 0.06 n 3 Best Fitting Double Couple Mo = 2.69e+22 dyne-cm Mw = 4.22 Z = 51 km Plane Strike Dip Rake NP1 255 60 -40 NP2 8 56 -143 Principal Axes: Axis Value Plunge Azimuth T 2.69e+22 2 312 N 0.00e+00 42 44 P -2.69e+22 48 220 Moment Tensor: (dyne-cm) Component Value Mxx 5.05e+21 Mxy -1.92e+22 Mxz 1.10e+22 Myy 9.93e+21 Myz 7.72e+21 Mzz -1.50e+22 ###########--- ################------ ###################-------- T ####################-------- # #####################--------- ##########################---------- ######################-----####------- ###############--------------#########-- ###########------------------########### #########---------------------############ ######------------------------############ ####-------------------------############# ###--------------------------############# ----------------------------############ ------------ ------------############# ----------- P ------------############ ---------- -----------############ ----------------------############ -------------------########### -----------------########### ------------########## ------######## Global CMT Convention Moment Tensor: R T P -1.50e+22 1.10e+22 -7.72e+21 1.10e+22 5.05e+21 1.92e+22 -7.72e+21 1.92e+22 9.93e+21 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20120608182736/index.html |
STK = 255 DIP = 60 RAKE = -40 MW = 4.22 HS = 51.0
The NDK file is 20120608182736.ndk The waveform inversion is preferred.
Given the availability of digital waveforms for determination of the moment tensor, this section documents the added processing leading to mLg, if appropriate to the region, and ML by application of the respective IASPEI formulae. As a research study, the linear distance term of the IASPEI formula for ML is adjusted to remove a linear distance trend in residuals to give a regionally defined ML. The defined ML uses horizontal component recordings, but the same procedure is applied to the vertical components since there may be some interest in vertical component ground motions. Residual plots versus distance may indicate interesting features of ground motion scaling in some distance ranges. A residual plot of the regionalized magnitude is given as a function of distance and azimuth, since data sets may transcend different wave propagation provinces.
Left: ML computed using the IASPEI formula for Horizontal components. Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
Left: ML computed using the IASPEI formula for Vertical components (research). Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
![]() |
The focal mechanism was determined using broadband seismic waveforms. The location of the event (star) and the stations used for (red) the waveform inversion are shown in the next figure.
![]() |
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green's functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
hp c 0.02 n 3 lp c 0.06 n 3The results of this grid search are as follow:
DEPTH STK DIP RAKE MW FIT WVFGRD96 0.5 230 45 95 3.41 0.2288 WVFGRD96 1.0 230 45 90 3.45 0.2389 WVFGRD96 2.0 50 45 95 3.56 0.3002 WVFGRD96 3.0 225 45 85 3.63 0.3090 WVFGRD96 4.0 0 75 15 3.58 0.2970 WVFGRD96 5.0 0 80 15 3.60 0.2871 WVFGRD96 6.0 90 80 -10 3.62 0.2893 WVFGRD96 7.0 275 70 30 3.66 0.3032 WVFGRD96 8.0 275 70 35 3.71 0.3184 WVFGRD96 9.0 275 70 35 3.72 0.3263 WVFGRD96 10.0 275 70 35 3.73 0.3304 WVFGRD96 11.0 275 70 35 3.74 0.3325 WVFGRD96 12.0 275 70 35 3.75 0.3333 WVFGRD96 13.0 280 65 35 3.76 0.3344 WVFGRD96 14.0 5 90 60 3.77 0.3392 WVFGRD96 15.0 105 60 50 3.75 0.3489 WVFGRD96 16.0 80 75 -45 3.75 0.3603 WVFGRD96 17.0 80 75 -45 3.76 0.3751 WVFGRD96 18.0 80 75 -45 3.77 0.3882 WVFGRD96 19.0 80 75 -45 3.78 0.4001 WVFGRD96 20.0 80 70 -45 3.79 0.4109 WVFGRD96 21.0 80 70 -45 3.81 0.4228 WVFGRD96 22.0 80 70 -40 3.83 0.4333 WVFGRD96 23.0 80 70 -40 3.84 0.4433 WVFGRD96 24.0 80 70 -40 3.85 0.4520 WVFGRD96 25.0 260 45 -30 3.88 0.4638 WVFGRD96 26.0 260 50 -30 3.89 0.4748 WVFGRD96 27.0 260 50 -30 3.90 0.4858 WVFGRD96 28.0 260 50 -30 3.92 0.4957 WVFGRD96 29.0 260 50 -30 3.93 0.5043 WVFGRD96 30.0 260 50 -30 3.94 0.5120 WVFGRD96 31.0 260 55 -30 3.95 0.5197 WVFGRD96 32.0 260 55 -25 3.97 0.5278 WVFGRD96 33.0 260 60 -30 3.97 0.5384 WVFGRD96 34.0 260 60 -30 3.98 0.5485 WVFGRD96 35.0 260 60 -30 3.99 0.5578 WVFGRD96 36.0 260 60 -30 4.00 0.5661 WVFGRD96 37.0 260 60 -30 4.02 0.5729 WVFGRD96 38.0 260 60 -30 4.03 0.5781 WVFGRD96 39.0 260 60 -30 4.04 0.5797 WVFGRD96 40.0 255 55 -35 4.14 0.6033 WVFGRD96 41.0 255 55 -35 4.15 0.6136 WVFGRD96 42.0 255 60 -35 4.15 0.6225 WVFGRD96 43.0 255 60 -40 4.16 0.6310 WVFGRD96 44.0 255 60 -40 4.16 0.6382 WVFGRD96 45.0 255 60 -40 4.17 0.6438 WVFGRD96 46.0 255 60 -40 4.18 0.6488 WVFGRD96 47.0 255 60 -40 4.19 0.6521 WVFGRD96 48.0 255 60 -40 4.20 0.6545 WVFGRD96 49.0 255 60 -40 4.20 0.6554 WVFGRD96 50.0 255 60 -40 4.21 0.6557 WVFGRD96 51.0 255 60 -40 4.22 0.6559 WVFGRD96 52.0 255 60 -40 4.22 0.6545 WVFGRD96 53.0 255 60 -40 4.23 0.6525 WVFGRD96 54.0 255 60 -35 4.24 0.6493 WVFGRD96 55.0 255 65 -35 4.24 0.6457 WVFGRD96 56.0 255 65 -35 4.24 0.6424 WVFGRD96 57.0 255 65 -35 4.25 0.6389 WVFGRD96 58.0 255 65 -35 4.25 0.6341 WVFGRD96 59.0 255 65 -35 4.26 0.6287 WVFGRD96 60.0 255 65 -35 4.26 0.6227 WVFGRD96 61.0 255 65 -35 4.26 0.6161 WVFGRD96 62.0 255 65 -35 4.26 0.6082 WVFGRD96 63.0 255 65 -35 4.27 0.6014 WVFGRD96 64.0 255 65 -35 4.27 0.5930 WVFGRD96 65.0 255 65 -35 4.27 0.5848 WVFGRD96 66.0 260 70 -30 4.26 0.5777 WVFGRD96 67.0 260 70 -30 4.27 0.5704 WVFGRD96 68.0 260 70 -30 4.27 0.5629 WVFGRD96 69.0 260 70 -30 4.27 0.5552
The best solution is
WVFGRD96 51.0 255 60 -40 4.22 0.6559
The mechanism corresponding to the best fit is
![]() |
|
The best fit as a function of depth is given in the following figure:
![]() |
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed, the velocity model used in the predictions may not be perfect and the epicentral parameters may be be off. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
hp c 0.02 n 3 lp c 0.06 n 3
![]() |
Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated. The time scale is relative to the first trace sample. |
![]() |
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to the waveforms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
The WUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows (The format is in the model96 format of Computer Programs in Seismology).
MODEL.01 Model after 8 iterations ISOTROPIC KGS FLAT EARTH 1-D CONSTANT VELOCITY LINE08 LINE09 LINE10 LINE11 H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS 1.9000 3.4065 2.0089 2.2150 0.302E-02 0.679E-02 0.00 0.00 1.00 1.00 6.1000 5.5445 3.2953 2.6089 0.349E-02 0.784E-02 0.00 0.00 1.00 1.00 13.0000 6.2708 3.7396 2.7812 0.212E-02 0.476E-02 0.00 0.00 1.00 1.00 19.0000 6.4075 3.7680 2.8223 0.111E-02 0.249E-02 0.00 0.00 1.00 1.00 0.0000 7.9000 4.6200 3.2760 0.164E-10 0.370E-10 0.00 0.00 1.00 1.00