The ANSS event ID is ak0123q2y5io and the event page is at https://earthquake.usgs.gov/earthquakes/eventpage/ak0123q2y5io/executive.
2012/03/21 07:42:02 61.309 -150.065 45.4 3.8 Alaska
USGS/SLU Moment Tensor Solution ENS 2012/03/21 07:42:02:0 61.31 -150.07 45.4 3.8 Alaska Stations used: AK.BPAW AK.BRLK AK.GLI AK.RC01 AK.SKN AK.SSN AT.PMR Filtering commands used: hp c 0.02 n 3 lp c 0.10 n 3 br c 0.12 0.25 n 4 p 2 Best Fitting Double Couple Mo = 7.50e+21 dyne-cm Mw = 3.85 Z = 51 km Plane Strike Dip Rake NP1 185 70 -70 NP2 318 28 -133 Principal Axes: Axis Value Plunge Azimuth T 7.50e+21 22 260 N 0.00e+00 19 358 P -7.50e+21 60 124 Moment Tensor: (dyne-cm) Component Value Mxx -3.84e+20 Mxy 1.98e+21 Mxz 1.34e+21 Myy 4.91e+21 Myz -5.30e+21 Mzz -4.53e+21 --------###### -----------########### -############-----########## #############---------######## ##############------------######## ###############--------------####### ###############-----------------###### ################------------------###### ###############--------------------##### ################---------------------##### ################---------------------##### ### ##########----------------------#### ### T ##########---------- ---------#### ## ##########---------- P ---------### ###############---------- ---------### ##############----------------------## #############---------------------## ############---------------------# ###########------------------- ##########------------------ ########-------------- #####--------- Global CMT Convention Moment Tensor: R T P -4.53e+21 1.34e+21 5.30e+21 1.34e+21 -3.84e+20 -1.98e+21 5.30e+21 -1.98e+21 4.91e+21 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20120321074202/index.html |
STK = 185 DIP = 70 RAKE = -70 MW = 3.85 HS = 51.0
The NDK file is 20120321074202.ndk The waveform inversion is preferred.
Given the availability of digital waveforms for determination of the moment tensor, this section documents the added processing leading to mLg, if appropriate to the region, and ML by application of the respective IASPEI formulae. As a research study, the linear distance term of the IASPEI formula for ML is adjusted to remove a linear distance trend in residuals to give a regionally defined ML. The defined ML uses horizontal component recordings, but the same procedure is applied to the vertical components since there may be some interest in vertical component ground motions. Residual plots versus distance may indicate interesting features of ground motion scaling in some distance ranges. A residual plot of the regionalized magnitude is given as a function of distance and azimuth, since data sets may transcend different wave propagation provinces.
Left: ML computed using the IASPEI formula for Horizontal components. Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
Left: ML computed using the IASPEI formula for Vertical components (research). Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
![]() |
The focal mechanism was determined using broadband seismic waveforms. The location of the event (star) and the stations used for (red) the waveform inversion are shown in the next figure.
![]() |
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green's functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
hp c 0.02 n 3 lp c 0.10 n 3 br c 0.12 0.25 n 4 p 2The results of this grid search are as follow:
DEPTH STK DIP RAKE MW FIT WVFGRD96 0.5 215 45 85 3.00 0.1948 WVFGRD96 1.0 175 80 15 2.95 0.1447 WVFGRD96 2.0 5 40 90 3.17 0.2274 WVFGRD96 3.0 170 85 -25 3.20 0.2419 WVFGRD96 4.0 170 85 -30 3.26 0.2897 WVFGRD96 5.0 170 85 -35 3.30 0.3383 WVFGRD96 6.0 170 80 -35 3.33 0.3768 WVFGRD96 7.0 165 70 -40 3.35 0.4107 WVFGRD96 8.0 145 30 35 3.40 0.4308 WVFGRD96 9.0 145 30 35 3.40 0.4490 WVFGRD96 10.0 140 35 25 3.39 0.4604 WVFGRD96 11.0 140 35 25 3.39 0.4705 WVFGRD96 12.0 140 40 20 3.40 0.4793 WVFGRD96 13.0 140 40 20 3.41 0.4888 WVFGRD96 14.0 135 40 15 3.42 0.4969 WVFGRD96 15.0 135 40 15 3.43 0.5040 WVFGRD96 16.0 135 45 15 3.44 0.5100 WVFGRD96 17.0 135 45 10 3.45 0.5163 WVFGRD96 18.0 135 45 10 3.46 0.5209 WVFGRD96 19.0 135 45 10 3.47 0.5255 WVFGRD96 20.0 135 45 10 3.49 0.5289 WVFGRD96 21.0 135 45 10 3.50 0.5294 WVFGRD96 22.0 135 40 10 3.51 0.5308 WVFGRD96 23.0 160 40 -15 3.56 0.5370 WVFGRD96 24.0 160 40 -15 3.57 0.5420 WVFGRD96 25.0 160 40 -15 3.58 0.5461 WVFGRD96 26.0 160 40 -15 3.59 0.5494 WVFGRD96 27.0 165 45 -10 3.60 0.5514 WVFGRD96 28.0 160 40 -15 3.61 0.5545 WVFGRD96 29.0 160 45 -15 3.62 0.5592 WVFGRD96 30.0 30 85 70 3.58 0.5665 WVFGRD96 31.0 30 85 70 3.59 0.5714 WVFGRD96 32.0 30 85 70 3.59 0.5732 WVFGRD96 33.0 205 90 -65 3.60 0.5761 WVFGRD96 34.0 25 90 65 3.60 0.5783 WVFGRD96 35.0 25 90 65 3.61 0.5795 WVFGRD96 36.0 25 90 65 3.62 0.5802 WVFGRD96 37.0 200 85 -65 3.62 0.5834 WVFGRD96 38.0 195 80 -60 3.63 0.5824 WVFGRD96 39.0 195 80 -60 3.63 0.5820 WVFGRD96 40.0 195 80 -70 3.76 0.5716 WVFGRD96 41.0 195 80 -70 3.77 0.5765 WVFGRD96 42.0 195 80 -70 3.78 0.5816 WVFGRD96 43.0 55 15 -45 3.79 0.5858 WVFGRD96 44.0 65 20 -40 3.80 0.5899 WVFGRD96 45.0 185 70 -70 3.81 0.5975 WVFGRD96 46.0 180 65 -70 3.82 0.6014 WVFGRD96 47.0 185 70 -70 3.82 0.6058 WVFGRD96 48.0 180 65 -70 3.83 0.6080 WVFGRD96 49.0 185 70 -70 3.84 0.6108 WVFGRD96 50.0 185 70 -70 3.84 0.6108 WVFGRD96 51.0 185 70 -70 3.85 0.6111 WVFGRD96 52.0 185 70 -70 3.86 0.6099 WVFGRD96 53.0 185 70 -70 3.86 0.6074 WVFGRD96 54.0 180 70 -70 3.88 0.6048 WVFGRD96 55.0 20 15 -65 3.90 0.6029 WVFGRD96 56.0 0 15 -80 3.91 0.6046 WVFGRD96 57.0 -5 15 -85 3.92 0.6029 WVFGRD96 58.0 0 15 -80 3.92 0.6017 WVFGRD96 59.0 10 20 -70 3.92 0.6011 WVFGRD96 60.0 10 20 -70 3.93 0.5986 WVFGRD96 61.0 10 20 -70 3.93 0.5970 WVFGRD96 62.0 10 20 -70 3.94 0.5939 WVFGRD96 63.0 10 20 -70 3.94 0.5895 WVFGRD96 64.0 10 20 -70 3.94 0.5850 WVFGRD96 65.0 10 20 -70 3.95 0.5797 WVFGRD96 66.0 15 20 -65 3.95 0.5727 WVFGRD96 67.0 15 20 -65 3.95 0.5668 WVFGRD96 68.0 75 35 -60 3.93 0.5709 WVFGRD96 69.0 75 35 -60 3.93 0.5663 WVFGRD96 70.0 70 35 -60 3.93 0.5622 WVFGRD96 71.0 70 35 -60 3.93 0.5580 WVFGRD96 72.0 65 35 -65 3.92 0.5532 WVFGRD96 73.0 65 35 -65 3.92 0.5480 WVFGRD96 74.0 65 35 -65 3.93 0.5431 WVFGRD96 75.0 180 90 -70 4.01 0.5376 WVFGRD96 76.0 180 90 -70 4.01 0.5365 WVFGRD96 77.0 5 85 75 4.00 0.5390 WVFGRD96 78.0 180 90 -70 4.02 0.5330 WVFGRD96 79.0 180 90 -70 4.02 0.5308 WVFGRD96 80.0 180 90 -75 4.01 0.5291 WVFGRD96 81.0 180 90 -75 4.02 0.5266 WVFGRD96 82.0 180 90 -75 4.02 0.5243 WVFGRD96 83.0 180 90 -75 4.02 0.5219 WVFGRD96 84.0 0 85 75 4.01 0.5257 WVFGRD96 85.0 180 90 -75 4.02 0.5156 WVFGRD96 86.0 180 90 -75 4.02 0.5129 WVFGRD96 87.0 0 85 80 4.01 0.5182 WVFGRD96 88.0 145 40 -10 4.09 0.5190 WVFGRD96 89.0 145 40 -10 4.09 0.5167 WVFGRD96 90.0 145 45 -10 4.11 0.5145 WVFGRD96 91.0 145 45 -10 4.11 0.5139 WVFGRD96 92.0 145 45 -10 4.11 0.5124 WVFGRD96 93.0 145 45 -10 4.11 0.5106 WVFGRD96 94.0 145 45 -10 4.11 0.5081 WVFGRD96 95.0 145 45 -10 4.11 0.5054 WVFGRD96 96.0 145 45 -10 4.11 0.5037 WVFGRD96 97.0 145 45 -10 4.11 0.5016 WVFGRD96 98.0 145 45 -10 4.11 0.4989 WVFGRD96 99.0 145 45 -10 4.11 0.4958
The best solution is
WVFGRD96 51.0 185 70 -70 3.85 0.6111
The mechanism corresponding to the best fit is
![]() |
|
The best fit as a function of depth is given in the following figure:
![]() |
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed, the velocity model used in the predictions may not be perfect and the epicentral parameters may be be off. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
hp c 0.02 n 3 lp c 0.10 n 3 br c 0.12 0.25 n 4 p 2
![]() |
Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated. The time scale is relative to the first trace sample. |
![]() |
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to the waveforms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
The WUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows (The format is in the model96 format of Computer Programs in Seismology).
MODEL.01 Model after 8 iterations ISOTROPIC KGS FLAT EARTH 1-D CONSTANT VELOCITY LINE08 LINE09 LINE10 LINE11 H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS 1.9000 3.4065 2.0089 2.2150 0.302E-02 0.679E-02 0.00 0.00 1.00 1.00 6.1000 5.5445 3.2953 2.6089 0.349E-02 0.784E-02 0.00 0.00 1.00 1.00 13.0000 6.2708 3.7396 2.7812 0.212E-02 0.476E-02 0.00 0.00 1.00 1.00 19.0000 6.4075 3.7680 2.8223 0.111E-02 0.249E-02 0.00 0.00 1.00 1.00 0.0000 7.9000 4.6200 3.2760 0.164E-10 0.370E-10 0.00 0.00 1.00 1.00