Location

Location ANSS

The ANSS event ID is ak01234mu8s7 and the event page is at https://earthquake.usgs.gov/earthquakes/eventpage/ak01234mu8s7/executive.

2012/03/08 10:57:42 61.007 -150.914 10.0 4.0 Alaska

Focal Mechanism

 USGS/SLU Moment Tensor Solution
 ENS  2012/03/08 10:57:42:0  61.01 -150.91  10.0 4.0 Alaska
 
 Stations used:
   AK.BPAW AK.CAST AK.CCB AK.DHY AK.DIV AK.EYAK AK.GLI AK.KLU 
   AK.KTH AK.MCK AK.MLY AK.PPLA AK.RIDG AK.RND AK.SAW AK.SCM 
   AK.SKN AK.SSN AK.SWD AK.TRF IU.COLA 
 
 Filtering commands used:
   hp c 0.02 n 3
   lp c 0.06 n 3
 
 Best Fitting Double Couple
  Mo = 1.55e+22 dyne-cm
  Mw = 4.06 
  Z  = 30 km
  Plane   Strike  Dip  Rake
   NP1       43    78   118
   NP2      155    30    25
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   1.55e+22     50     343
    N   0.00e+00     27     217
    P  -1.55e+22     28     111

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx     4.36e+21
       Mxy     2.34e+21
       Mxz     9.63e+21
       Myy    -1.00e+22
       Myz    -8.10e+21
       Mzz     5.67e+21
                                                     
                                                     
                                                     
                                                     
                     ##############                  
                 -#####################              
              --##########################           
             --###########################-          
           ---##########   ##############----        
          ----########## T #############------       
         ----###########   ############--------      
        -----########################-----------     
        -----#######################------------     
       ------######################--------------    
       ------####################----------------    
       ------##################------------------    
       ------#################-----------   -----    
        ------##############------------- P ----     
        -------###########---------------   ----     
         -------########-----------------------      
          -------#####------------------------       
           ----------------------------------        
             ---####-----------------------          
              #########-------------------           
                 #########-------------              
                     ##############                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
  5.67e+21   9.63e+21   8.10e+21 
  9.63e+21   4.36e+21  -2.34e+21 
  8.10e+21  -2.34e+21  -1.00e+22 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20120308105742/index.html
        

Preferred Solution

The preferred solution from an analysis of the surface-wave spectral amplitude radiation pattern, waveform inversion or first motion observations is

      STK = 155
      DIP = 30
     RAKE = 25
       MW = 4.06
       HS = 30.0

The NDK file is 20120308105742.ndk The waveform inversion is preferred.

Moment Tensor Comparison

The following compares this source inversion to those provided by others. The purpose is to look for major differences and also to note slight differences that might be inherent to the processing procedure. For completeness the USGS/SLU solution is repeated from above.
SLU
USGSMT
 USGS/SLU Moment Tensor Solution
 ENS  2012/03/08 10:57:42:0  61.01 -150.91  10.0 4.0 Alaska
 
 Stations used:
   AK.BPAW AK.CAST AK.CCB AK.DHY AK.DIV AK.EYAK AK.GLI AK.KLU 
   AK.KTH AK.MCK AK.MLY AK.PPLA AK.RIDG AK.RND AK.SAW AK.SCM 
   AK.SKN AK.SSN AK.SWD AK.TRF IU.COLA 
 
 Filtering commands used:
   hp c 0.02 n 3
   lp c 0.06 n 3
 
 Best Fitting Double Couple
  Mo = 1.55e+22 dyne-cm
  Mw = 4.06 
  Z  = 30 km
  Plane   Strike  Dip  Rake
   NP1       43    78   118
   NP2      155    30    25
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   1.55e+22     50     343
    N   0.00e+00     27     217
    P  -1.55e+22     28     111

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx     4.36e+21
       Mxy     2.34e+21
       Mxz     9.63e+21
       Myy    -1.00e+22
       Myz    -8.10e+21
       Mzz     5.67e+21
                                                     
                                                     
                                                     
                                                     
                     ##############                  
                 -#####################              
              --##########################           
             --###########################-          
           ---##########   ##############----        
          ----########## T #############------       
         ----###########   ############--------      
        -----########################-----------     
        -----#######################------------     
       ------######################--------------    
       ------####################----------------    
       ------##################------------------    
       ------#################-----------   -----    
        ------##############------------- P ----     
        -------###########---------------   ----     
         -------########-----------------------      
          -------#####------------------------       
           ----------------------------------        
             ---####-----------------------          
              #########-------------------           
                 #########-------------              
                     ##############                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
  5.67e+21   9.63e+21   8.10e+21 
  9.63e+21   4.36e+21  -2.34e+21 
  8.10e+21  -2.34e+21  -1.00e+22 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20120308105742/index.html
	
USGS/SLU Regional Moment Solution

12/03/08 10:57:44.07

Epicenter:  60.996 -150.950
MW 4.1

USGS/SLU REGIONAL MOMENT TENSOR
Depth  26         No. of sta: 67
Moment Tensor;   Scale 10**15 Nm
  Mrr= 0.91       Mtt= 0.56
  Mpp=-1.46       Mrt= 0.90
  Mrp= 0.45       Mtp=-0.04
 Principal axes:
  T  Val=  1.68  Plg=51  Azm=350
  N       -0.11      36      196
  P       -1.57      13       96

Best Double Couple:Mo=1.6*10**15
 NP1:Strike=149 Dip=45 Slip=  34
 NP2:        34     67       130




        

Magnitudes

Given the availability of digital waveforms for determination of the moment tensor, this section documents the added processing leading to mLg, if appropriate to the region, and ML by application of the respective IASPEI formulae. As a research study, the linear distance term of the IASPEI formula for ML is adjusted to remove a linear distance trend in residuals to give a regionally defined ML. The defined ML uses horizontal component recordings, but the same procedure is applied to the vertical components since there may be some interest in vertical component ground motions. Residual plots versus distance may indicate interesting features of ground motion scaling in some distance ranges. A residual plot of the regionalized magnitude is given as a function of distance and azimuth, since data sets may transcend different wave propagation provinces.

ML Magnitude


Left: ML computed using the IASPEI formula for Horizontal components. Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot. Right: Residuals from new relation as a function of distance and azimuth.


Left: ML computed using the IASPEI formula for Vertical components (research). Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot. Right: Residuals from new relation as a function of distance and azimuth.

Context

The left panel of the next figure presents the focal mechanism for this earthquake (red) in the context of other nearby events (blue) in the SLU Moment Tensor Catalog. The right panel shows the inferred direction of maximum compressive stress and the type of faulting (green is strike-slip, red is normal, blue is thrust; oblique is shown by a combination of colors). Thus context plot is useful for assessing the appropriateness of the moment tensor of this event.

Waveform Inversion using wvfgrd96

The focal mechanism was determined using broadband seismic waveforms. The location of the event (star) and the stations used for (red) the waveform inversion are shown in the next figure.
Location of broadband stations used for waveform inversion

The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green's functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.

The observed and predicted traces are filtered using the following gsac commands:

hp c 0.02 n 3
lp c 0.06 n 3
The results of this grid search are as follow:

           DEPTH  STK   DIP  RAKE   MW    FIT
WVFGRD96    0.5   265    45   -90   3.51 0.2878
WVFGRD96    1.0    85    45   -90   3.57 0.3107
WVFGRD96    2.0   265    45   -90   3.67 0.3879
WVFGRD96    3.0   265    45   -85   3.76 0.4134
WVFGRD96    4.0   115    60   -35   3.78 0.3851
WVFGRD96    5.0   120    75   -20   3.80 0.3547
WVFGRD96    6.0   125    90   -10   3.80 0.3297
WVFGRD96    7.0   130    50     0   3.78 0.3289
WVFGRD96    8.0   135    40     5   3.83 0.3428
WVFGRD96    9.0   140    35    15   3.84 0.3723
WVFGRD96   10.0   140    30    10   3.85 0.4033
WVFGRD96   11.0   145    30    15   3.85 0.4335
WVFGRD96   12.0   145    30    20   3.87 0.4615
WVFGRD96   13.0   150    30    25   3.88 0.4883
WVFGRD96   14.0   150    30    25   3.90 0.5133
WVFGRD96   15.0   150    30    25   3.91 0.5366
WVFGRD96   16.0   155    30    30   3.92 0.5582
WVFGRD96   17.0   155    30    30   3.93 0.5782
WVFGRD96   18.0   155    30    30   3.94 0.5964
WVFGRD96   19.0   155    30    30   3.95 0.6130
WVFGRD96   20.0   155    30    30   3.96 0.6283
WVFGRD96   21.0   160    30    30   3.97 0.6410
WVFGRD96   22.0   160    30    30   3.98 0.6540
WVFGRD96   23.0   160    30    30   3.99 0.6654
WVFGRD96   24.0   160    30    30   4.00 0.6753
WVFGRD96   25.0   160    30    30   4.01 0.6839
WVFGRD96   26.0   160    30    30   4.02 0.6908
WVFGRD96   27.0   160    30    30   4.03 0.6959
WVFGRD96   28.0   160    30    30   4.04 0.6996
WVFGRD96   29.0   155    30    25   4.05 0.7017
WVFGRD96   30.0   155    30    25   4.06 0.7021
WVFGRD96   31.0   155    30    25   4.07 0.7009
WVFGRD96   32.0   155    30    25   4.08 0.6979
WVFGRD96   33.0   155    30    25   4.08 0.6937
WVFGRD96   34.0   155    30    25   4.09 0.6882
WVFGRD96   35.0   155    30    25   4.09 0.6815
WVFGRD96   36.0   150    35    25   4.11 0.6750
WVFGRD96   37.0   150    35    25   4.12 0.6683
WVFGRD96   38.0   150    40    25   4.13 0.6619
WVFGRD96   39.0   150    40    25   4.13 0.6550
WVFGRD96   40.0   155    25    25   4.24 0.6418
WVFGRD96   41.0   155    25    25   4.24 0.6291
WVFGRD96   42.0   150    30    20   4.25 0.6156
WVFGRD96   43.0   150    30    20   4.25 0.6029
WVFGRD96   44.0   150    30    20   4.26 0.5896
WVFGRD96   45.0   150    30    20   4.26 0.5760
WVFGRD96   46.0   150    30    20   4.26 0.5622
WVFGRD96   47.0   150    30    20   4.26 0.5480
WVFGRD96   48.0   145    35    15   4.27 0.5348
WVFGRD96   49.0   145    35    15   4.27 0.5214

The best solution is

WVFGRD96   30.0   155    30    25   4.06 0.7021

The mechanism corresponding to the best fit is
Figure 1. Waveform inversion focal mechanism

The best fit as a function of depth is given in the following figure:

Figure 2. Depth sensitivity for waveform mechanism

The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed, the velocity model used in the predictions may not be perfect and the epicentral parameters may be be off. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).

The bandpass filter used in the processing and for the display was

hp c 0.02 n 3
lp c 0.06 n 3
Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated. The time scale is relative to the first trace sample.

Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to the waveforms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure.

A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:

Assuming only a mislocation, the time shifts are fit to a functional form:

 Time_shift = A + B cos Azimuth + C Sin Azimuth

The time shifts for this inversion lead to the next figure:

The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.

Velocity Model

The WUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows (The format is in the model96 format of Computer Programs in Seismology).

MODEL.01
Model after     8 iterations
ISOTROPIC
KGS
FLAT EARTH
1-D
CONSTANT VELOCITY
LINE08
LINE09
LINE10
LINE11
      H(KM)   VP(KM/S)   VS(KM/S) RHO(GM/CC)         QP         QS       ETAP       ETAS      FREFP      FREFS
     1.9000     3.4065     2.0089     2.2150  0.302E-02  0.679E-02   0.00       0.00       1.00       1.00    
     6.1000     5.5445     3.2953     2.6089  0.349E-02  0.784E-02   0.00       0.00       1.00       1.00    
    13.0000     6.2708     3.7396     2.7812  0.212E-02  0.476E-02   0.00       0.00       1.00       1.00    
    19.0000     6.4075     3.7680     2.8223  0.111E-02  0.249E-02   0.00       0.00       1.00       1.00    
     0.0000     7.9000     4.6200     3.2760  0.164E-10  0.370E-10   0.00       0.00       1.00       1.00    
Last Changed Fri Apr 26 08:29:02 PM CDT 2024