The ANSS event ID is usp000jajb and the event page is at https://earthquake.usgs.gov/earthquakes/eventpage/usp000jajb/executive.
2011/11/08 02:46:57 35.531 -96.788 5.0 4.8 Oklahoma
USGS/SLU Moment Tensor Solution ENS 2011/11/08 02:46:57:0 35.53 -96.79 5.0 4.8 Oklahoma Stations used: AG.FCAR AG.HHAR AG.LCAR AG.WLAR IU.CCM NM.MGMO NM.PBMO NM.UALR NM.X301 TA.136A TA.137A TA.138A TA.139A TA.141A TA.236A TA.237A TA.238A TA.338A TA.436A TA.ABTX TA.MSTX TA.N33A TA.O33A TA.O34A TA.O36A TA.O37A TA.O38A TA.P34A TA.P36A TA.P37A TA.P38A TA.P39B TA.Q34A TA.Q35A TA.Q36A TA.Q37A TA.Q38A TA.Q39A TA.Q40A TA.R34A TA.R35A TA.R36A TA.R37A TA.R38A TA.R39A TA.R40A TA.R41A TA.S34A TA.S35A TA.S36A TA.S37A TA.S38A TA.S39A TA.S40A TA.S41A TA.S42A TA.T34A TA.T35A TA.T36A TA.T37A TA.T38A TA.T39A TA.T40A TA.T41A TA.TUL1 TA.U32A TA.U35A TA.U36A TA.U37A TA.U38A TA.U39A TA.U40A TA.U41A TA.V36A TA.V37A TA.V38A TA.V39A TA.V40A TA.V41A TA.V42A TA.W35A TA.W36A TA.W37B TA.W38A TA.W39A TA.W40A TA.W42A TA.WHTX TA.X35A TA.X36A TA.X37A TA.X38A TA.X39A TA.X40A TA.X41A TA.Y35A TA.Y36A TA.Y37A TA.Y38A TA.Y39A TA.Y40A TA.Y41A TA.Y43A TA.Z36A TA.Z37A TA.Z38A TA.Z39A TA.Z40A TA.Z41A US.CBKS US.KSU1 US.MIAR US.WMOK Filtering commands used: hp c 0.02 n 3 lp c 0.06 n 3 Best Fitting Double Couple Mo = 2.21e+23 dyne-cm Mw = 4.83 Z = 8 km Plane Strike Dip Rake NP1 95 90 -15 NP2 185 75 -180 Principal Axes: Axis Value Plunge Azimuth T 2.21e+23 11 141 N 0.00e+00 75 275 P -2.21e+23 11 49 Moment Tensor: (dyne-cm) Component Value Mxx 3.71e+22 Mxy -2.11e+23 Mxz -5.71e+22 Myy -3.71e+22 Myz -4.99e+21 Mzz 5.01e+15 ########------ ###########----------- #############--------------- ##############-------------- ###############--------------- P - ################--------------- -- ################---------------------- #################----------------------- #################----------------------- #################------------------------- ----------#######------------------------- -----------------###############---------- -----------------######################### ----------------######################## ----------------######################## ---------------####################### --------------###################### -------------############### ### -----------############### T # -----------############## --------############## -----######### Global CMT Convention Moment Tensor: R T P 5.01e+15 -5.71e+22 4.99e+21 -5.71e+22 3.71e+22 2.11e+23 4.99e+21 2.11e+23 -3.71e+22 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20111108024657/index.html |
STK = 95 DIP = 90 RAKE = -15 MW = 4.83 HS = 8.0
The NDK file is 20111108024657.ndk The waveform inversion is preferred.
The following compares this source inversion to those provided by others. The purpose is to look for major differences and also to note slight differences that might be inherent to the processing procedure. For completeness the USGS/SLU solution is repeated from above.
USGS/SLU Moment Tensor Solution ENS 2011/11/08 02:46:57:0 35.53 -96.79 5.0 4.8 Oklahoma Stations used: AG.FCAR AG.HHAR AG.LCAR AG.WLAR IU.CCM NM.MGMO NM.PBMO NM.UALR NM.X301 TA.136A TA.137A TA.138A TA.139A TA.141A TA.236A TA.237A TA.238A TA.338A TA.436A TA.ABTX TA.MSTX TA.N33A TA.O33A TA.O34A TA.O36A TA.O37A TA.O38A TA.P34A TA.P36A TA.P37A TA.P38A TA.P39B TA.Q34A TA.Q35A TA.Q36A TA.Q37A TA.Q38A TA.Q39A TA.Q40A TA.R34A TA.R35A TA.R36A TA.R37A TA.R38A TA.R39A TA.R40A TA.R41A TA.S34A TA.S35A TA.S36A TA.S37A TA.S38A TA.S39A TA.S40A TA.S41A TA.S42A TA.T34A TA.T35A TA.T36A TA.T37A TA.T38A TA.T39A TA.T40A TA.T41A TA.TUL1 TA.U32A TA.U35A TA.U36A TA.U37A TA.U38A TA.U39A TA.U40A TA.U41A TA.V36A TA.V37A TA.V38A TA.V39A TA.V40A TA.V41A TA.V42A TA.W35A TA.W36A TA.W37B TA.W38A TA.W39A TA.W40A TA.W42A TA.WHTX TA.X35A TA.X36A TA.X37A TA.X38A TA.X39A TA.X40A TA.X41A TA.Y35A TA.Y36A TA.Y37A TA.Y38A TA.Y39A TA.Y40A TA.Y41A TA.Y43A TA.Z36A TA.Z37A TA.Z38A TA.Z39A TA.Z40A TA.Z41A US.CBKS US.KSU1 US.MIAR US.WMOK Filtering commands used: hp c 0.02 n 3 lp c 0.06 n 3 Best Fitting Double Couple Mo = 2.21e+23 dyne-cm Mw = 4.83 Z = 8 km Plane Strike Dip Rake NP1 95 90 -15 NP2 185 75 -180 Principal Axes: Axis Value Plunge Azimuth T 2.21e+23 11 141 N 0.00e+00 75 275 P -2.21e+23 11 49 Moment Tensor: (dyne-cm) Component Value Mxx 3.71e+22 Mxy -2.11e+23 Mxz -5.71e+22 Myy -3.71e+22 Myz -4.99e+21 Mzz 5.01e+15 ########------ ###########----------- #############--------------- ##############-------------- ###############--------------- P - ################--------------- -- ################---------------------- #################----------------------- #################----------------------- #################------------------------- ----------#######------------------------- -----------------###############---------- -----------------######################### ----------------######################## ----------------######################## ---------------####################### --------------###################### -------------############### ### -----------############### T # -----------############## --------############## -----######### Global CMT Convention Moment Tensor: R T P 5.01e+15 -5.71e+22 4.99e+21 -5.71e+22 3.71e+22 2.11e+23 4.99e+21 2.11e+23 -3.71e+22 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20111108024657/index.html |
USGS/SLU Regional Moment Solution OKLAHOMA 11/11/08 02:46:57.04 Epicenter: 35.535 -96.779 MW 4.8 USGS/SLU REGIONAL MOMENT TENSOR Depth 6 No. of sta: 57 Moment Tensor; Scale 10**16 Nm Mrr=-0.25 Mtt= 0.39 Mpp=-0.13 Mrt= 0.15 Mrp= 0.50 Mtp= 2.01 Principal axes: T Val= 2.23 Plg=10 Azm=318 N -0.29 76 181 P -1.95 9 50 Best Double Couple:Mo=2.1*10**16 NP1:Strike= 94 Dip=76 Slip= 1 NP2: 4 89 166 |
ovember 8, 2011, OKLAHOMA, MW=5.0 Meredith Nettles Goran Ekstrom CENTROID-MOMENT-TENSOR SOLUTION GCMT EVENT: C201111080246A DATA: DK CU IU G II LD GE L.P.BODY WAVES: 18S, 19C, T= 40 SURFACE WAVES: 38S, 76C, T= 50 TIMESTAMP: Q-20111108172407 CENTROID LOCATION: ORIGIN TIME: 02:46:59.0 0.3 LAT:35.56N 0.02;LON: 96.75W 0.02 DEP: 12.0 FIX;TRIANG HDUR: 0.8 MOMENT TENSOR: SCALE 10**23 D-CM RR= 0.119 0.131; TT= 0.061 0.139 PP=-0.179 0.106; RT= 0.548 0.364 RP=-0.424 0.329; TP= 3.320 0.093 PRINCIPAL AXES: 1.(T) VAL= 3.266;PLG= 2;AZM=316 2.(N) 0.245; 79; 56 3.(P) -3.511; 11; 226 BEST DBLE.COUPLE:M0= 3.39*10**23 NP1: STRIKE= 2;DIP=81;SLIP=-174 NP2: STRIKE=271;DIP=84;SLIP= -9 ######----- ###########-------- T ###########---------- # ###########------------ ################------------- #################-------------- #################-------------- ##################--------------- ######------------#######-------- ------------------############### ------------------############### -----------------############## -----------------############## -- -----------############# - P ----------############# ----------########### ----------######### -----###### |
Given the availability of digital waveforms for determination of the moment tensor, this section documents the added processing leading to mLg, if appropriate to the region, and ML by application of the respective IASPEI formulae. As a research study, the linear distance term of the IASPEI formula for ML is adjusted to remove a linear distance trend in residuals to give a regionally defined ML. The defined ML uses horizontal component recordings, but the same procedure is applied to the vertical components since there may be some interest in vertical component ground motions. Residual plots versus distance may indicate interesting features of ground motion scaling in some distance ranges. A residual plot of the regionalized magnitude is given as a function of distance and azimuth, since data sets may transcend different wave propagation provinces.
Left: mLg computed using the IASPEI formula. Center: mLg residuals versus epicentral distance ; the values used for the trimmed mean magnitude estimate are indicated.
Right: residuals as a function of distance and azimuth.
Left: ML computed using the IASPEI formula for Horizontal components. Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
Left: ML computed using the IASPEI formula for Vertical components (research). Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
![]() |
The focal mechanism was determined using broadband seismic waveforms. The location of the event (star) and the stations used for (red) the waveform inversion are shown in the next figure.
![]() |
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green's functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
hp c 0.02 n 3 lp c 0.06 n 3The results of this grid search are as follow:
DEPTH STK DIP RAKE MW FIT WVFGRD96 0.5 270 75 -20 4.54 0.4186 WVFGRD96 1.0 275 85 -5 4.55 0.4517 WVFGRD96 2.0 270 75 -20 4.67 0.5566 WVFGRD96 3.0 275 90 0 4.69 0.6021 WVFGRD96 4.0 275 90 0 4.73 0.6243 WVFGRD96 5.0 275 85 5 4.75 0.6333 WVFGRD96 6.0 95 90 -5 4.78 0.6360 WVFGRD96 7.0 95 90 -10 4.80 0.6365 WVFGRD96 8.0 95 90 -15 4.83 0.6378 WVFGRD96 9.0 95 90 -15 4.84 0.6259 WVFGRD96 10.0 275 70 5 4.85 0.6166 WVFGRD96 11.0 275 70 5 4.86 0.6082 WVFGRD96 12.0 95 70 5 4.87 0.6046 WVFGRD96 13.0 95 70 5 4.88 0.5991 WVFGRD96 14.0 95 70 5 4.89 0.5928 WVFGRD96 15.0 95 70 5 4.90 0.5856 WVFGRD96 16.0 95 70 5 4.90 0.5776 WVFGRD96 17.0 95 70 5 4.91 0.5691 WVFGRD96 18.0 95 70 5 4.91 0.5605 WVFGRD96 19.0 95 70 5 4.92 0.5517 WVFGRD96 20.0 95 75 -5 4.93 0.5429 WVFGRD96 21.0 95 75 -5 4.94 0.5353 WVFGRD96 22.0 95 75 -5 4.94 0.5274 WVFGRD96 23.0 95 75 -5 4.95 0.5194 WVFGRD96 24.0 95 75 -5 4.95 0.5112 WVFGRD96 25.0 95 75 -5 4.96 0.5034 WVFGRD96 26.0 95 75 -5 4.96 0.4956 WVFGRD96 27.0 95 75 -5 4.97 0.4877 WVFGRD96 28.0 95 75 -5 4.98 0.4803 WVFGRD96 29.0 95 75 -5 4.98 0.4728
The best solution is
WVFGRD96 8.0 95 90 -15 4.83 0.6378
The mechanism corresponding to the best fit is
![]() |
|
The best fit as a function of depth is given in the following figure:
![]() |
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed, the velocity model used in the predictions may not be perfect and the epicentral parameters may be be off. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
hp c 0.02 n 3 lp c 0.06 n 3
![]() |
Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated. The time scale is relative to the first trace sample. |
![]() |
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to the waveforms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
The following figure shows the stations used in the grid search for the best focal mechanism to fit the surface-wave spectral amplitudes of the Love and Rayleigh waves.
![]() |
|
The surface-wave determined focal mechanism is shown here.
NODAL PLANES STK= 5.00 DIP= 90.00 RAKE= -160.00 OR STK= 275.00 DIP= 70.00 RAKE= -0.01 DEPTH = 5.0 km Mw = 4.92 Best Fit 0.8634 - P-T axis plot gives solutions with FIT greater than FIT90
![]() |
Surface wave analysis was performed using codes from Computer Programs in Seismology, specifically the multiple filter analysis program do_mft and the surface-wave radiation pattern search program srfgrd96.
Digital data were collected, instrument response removed and traces converted
to Z, R an T components. Multiple filter analysis was applied to the Z and T traces to obtain the Rayleigh- and Love-wave spectral amplitudes, respectively.
These were input to the search program which examined all depths between 1 and 25 km
and all possible mechanisms.
![]() |
|
![]() |
Pressure-tension axis trends. Since the surface-wave spectra search does not distinguish between P and T axes and since there is a 180 ambiguity in strike, all possible P and T axes are plotted. First motion data and waveforms will be used to select the preferred mechanism. The purpose of this plot is to provide an idea of the possible range of solutions. The P and T-axes for all mechanisms with goodness of fit greater than 0.9 FITMAX (above) are plotted here. |
![]() |
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to the Love and Rayleigh wave radiation patterns. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. Because of the symmetry of the spectral amplitude rediation patterns, only strikes from 0-180 degrees are sampled. |
![]() |
![]() |
The WUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows (The format is in the model96 format of Computer Programs in Seismology).
MODEL.01 Model after 8 iterations ISOTROPIC KGS FLAT EARTH 1-D CONSTANT VELOCITY LINE08 LINE09 LINE10 LINE11 H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS 1.9000 3.4065 2.0089 2.2150 0.302E-02 0.679E-02 0.00 0.00 1.00 1.00 6.1000 5.5445 3.2953 2.6089 0.349E-02 0.784E-02 0.00 0.00 1.00 1.00 13.0000 6.2708 3.7396 2.7812 0.212E-02 0.476E-02 0.00 0.00 1.00 1.00 19.0000 6.4075 3.7680 2.8223 0.111E-02 0.249E-02 0.00 0.00 1.00 1.00 0.0000 7.9000 4.6200 3.2760 0.164E-10 0.370E-10 0.00 0.00 1.00 1.00