The ANSS event ID is ak011a43re2a and the event page is at https://earthquake.usgs.gov/earthquakes/eventpage/ak011a43re2a/executive.
2011/08/08 16:00:48 58.258 -151.469 46.1 4.3 Alaska
USGS/SLU Moment Tensor Solution ENS 2011/08/08 16:00:48:0 58.26 -151.47 46.1 4.3 Alaska Stations used: AK.BMR AK.BRLK AK.CAST AK.CNP AK.DIV AK.EYAK AK.FID AK.GHO AK.HOM AK.KNK AK.KTH AK.PPLA AK.RC01 AK.RND AK.SAW AK.SCM AK.SSN AK.SWD AK.TRF AT.OHAK AT.PMR AT.SVW2 II.KDAK Filtering commands used: cut o DIST/3.3 -40 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.06 n 3 Best Fitting Double Couple Mo = 5.01e+22 dyne-cm Mw = 4.40 Z = 40 km Plane Strike Dip Rake NP1 15 57 -123 NP2 245 45 -50 Principal Axes: Axis Value Plunge Azimuth T 5.01e+22 7 128 N 0.00e+00 27 34 P -5.01e+22 62 231 Moment Tensor: (dyne-cm) Component Value Mxx 1.41e+22 Mxy -2.93e+22 Mxz 9.63e+21 Myy 2.43e+22 Myz 2.06e+22 Mzz -3.84e+22 #############- ##################---- ######################------ #######################------- #################---------###----- #############--------------########- ###########-----------------########## #########--------------------########### #######----------------------########### #######-----------------------############ #####-------------------------############ ####-------------------------############# ###----------- ------------############# ##----------- P -----------############# #------------ -----------############# -------------------------############# -----------------------######### # ---------------------########## T -----------------############ ---------------############# ----------############ ---########### Global CMT Convention Moment Tensor: R T P -3.84e+22 9.63e+21 -2.06e+22 9.63e+21 1.41e+22 2.93e+22 -2.06e+22 2.93e+22 2.43e+22 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20110808160048/index.html |
STK = 245 DIP = 45 RAKE = -50 MW = 4.40 HS = 40.0
The NDK file is 20110808160048.ndk The waveform inversion is preferred.
Given the availability of digital waveforms for determination of the moment tensor, this section documents the added processing leading to mLg, if appropriate to the region, and ML by application of the respective IASPEI formulae. As a research study, the linear distance term of the IASPEI formula for ML is adjusted to remove a linear distance trend in residuals to give a regionally defined ML. The defined ML uses horizontal component recordings, but the same procedure is applied to the vertical components since there may be some interest in vertical component ground motions. Residual plots versus distance may indicate interesting features of ground motion scaling in some distance ranges. A residual plot of the regionalized magnitude is given as a function of distance and azimuth, since data sets may transcend different wave propagation provinces.
Left: ML computed using the IASPEI formula for Horizontal components. Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
Left: ML computed using the IASPEI formula for Vertical components (research). Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
![]() |
The focal mechanism was determined using broadband seismic waveforms. The location of the event (star) and the stations used for (red) the waveform inversion are shown in the next figure.
![]() |
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green's functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
cut o DIST/3.3 -40 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.06 n 3The results of this grid search are as follow:
DEPTH STK DIP RAKE MW FIT WVFGRD96 10.0 75 80 -35 3.91 0.4244 WVFGRD96 12.0 245 60 -40 3.96 0.4656 WVFGRD96 14.0 245 55 -40 3.99 0.5145 WVFGRD96 16.0 245 55 -40 4.02 0.5594 WVFGRD96 18.0 245 55 -40 4.05 0.5978 WVFGRD96 20.0 245 55 -40 4.07 0.6300 WVFGRD96 22.0 245 55 -45 4.10 0.6578 WVFGRD96 24.0 245 55 -45 4.13 0.6833 WVFGRD96 26.0 245 55 -45 4.15 0.7048 WVFGRD96 28.0 245 50 -45 4.17 0.7226 WVFGRD96 30.0 245 50 -45 4.19 0.7372 WVFGRD96 32.0 245 50 -45 4.21 0.7468 WVFGRD96 34.0 250 50 -40 4.23 0.7517 WVFGRD96 36.0 250 50 -40 4.25 0.7511 WVFGRD96 38.0 250 50 -40 4.26 0.7432 WVFGRD96 40.0 245 45 -50 4.40 0.7591 WVFGRD96 42.0 245 40 -50 4.43 0.7584 WVFGRD96 44.0 245 40 -50 4.45 0.7510 WVFGRD96 46.0 245 40 -50 4.46 0.7382 WVFGRD96 48.0 245 35 -50 4.48 0.7223 WVFGRD96 50.0 250 35 -45 4.49 0.7045 WVFGRD96 52.0 250 35 -45 4.50 0.6838 WVFGRD96 54.0 250 35 -45 4.51 0.6594 WVFGRD96 56.0 255 35 -40 4.51 0.6361 WVFGRD96 58.0 255 35 -40 4.52 0.6110 WVFGRD96 60.0 255 30 -40 4.53 0.5863 WVFGRD96 62.0 260 30 -35 4.53 0.5634 WVFGRD96 64.0 260 30 -35 4.53 0.5400 WVFGRD96 66.0 265 30 -30 4.52 0.5173 WVFGRD96 68.0 265 30 -30 4.52 0.4954 WVFGRD96 70.0 250 55 -30 4.47 0.4843 WVFGRD96 72.0 255 55 -25 4.46 0.4740 WVFGRD96 74.0 255 60 -25 4.46 0.4635 WVFGRD96 76.0 255 60 -25 4.46 0.4531 WVFGRD96 78.0 255 65 -25 4.47 0.4432 WVFGRD96 80.0 255 70 -25 4.47 0.4339 WVFGRD96 82.0 255 85 -25 4.48 0.4286 WVFGRD96 84.0 255 85 -25 4.48 0.4245 WVFGRD96 86.0 265 45 20 4.38 0.4160 WVFGRD96 88.0 265 45 20 4.38 0.4138 WVFGRD96 90.0 265 45 25 4.37 0.4126 WVFGRD96 92.0 265 45 25 4.38 0.4116 WVFGRD96 94.0 265 45 25 4.38 0.4109 WVFGRD96 96.0 265 45 25 4.38 0.4097 WVFGRD96 98.0 270 45 30 4.38 0.4107 WVFGRD96 100.0 230 40 -60 4.48 0.4113 WVFGRD96 102.0 230 40 -60 4.48 0.4135 WVFGRD96 104.0 230 40 -60 4.48 0.4150 WVFGRD96 106.0 230 40 -60 4.48 0.4159 WVFGRD96 108.0 235 40 -55 4.49 0.4166 WVFGRD96 110.0 235 40 -55 4.49 0.4178 WVFGRD96 112.0 235 40 -55 4.49 0.4183 WVFGRD96 114.0 225 35 -75 4.47 0.4199 WVFGRD96 116.0 225 35 -75 4.48 0.4218 WVFGRD96 118.0 225 35 -75 4.48 0.4237 WVFGRD96 120.0 225 35 -75 4.48 0.4254 WVFGRD96 122.0 225 35 -75 4.48 0.4274 WVFGRD96 124.0 225 35 -80 4.48 0.4291 WVFGRD96 126.0 225 35 -80 4.48 0.4304 WVFGRD96 128.0 225 35 -80 4.48 0.4319
The best solution is
WVFGRD96 40.0 245 45 -50 4.40 0.7591
The mechanism corresponding to the best fit is
![]() |
|
The best fit as a function of depth is given in the following figure:
![]() |
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed, the velocity model used in the predictions may not be perfect and the epicentral parameters may be be off. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
cut o DIST/3.3 -40 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.06 n 3
![]() |
Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated. The time scale is relative to the first trace sample. |
![]() |
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to the waveforms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
The WUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows (The format is in the model96 format of Computer Programs in Seismology).
MODEL.01 Model after 8 iterations ISOTROPIC KGS FLAT EARTH 1-D CONSTANT VELOCITY LINE08 LINE09 LINE10 LINE11 H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS 1.9000 3.4065 2.0089 2.2150 0.302E-02 0.679E-02 0.00 0.00 1.00 1.00 6.1000 5.5445 3.2953 2.6089 0.349E-02 0.784E-02 0.00 0.00 1.00 1.00 13.0000 6.2708 3.7396 2.7812 0.212E-02 0.476E-02 0.00 0.00 1.00 1.00 19.0000 6.4075 3.7680 2.8223 0.111E-02 0.249E-02 0.00 0.00 1.00 1.00 0.0000 7.9000 4.6200 3.2760 0.164E-10 0.370E-10 0.00 0.00 1.00 1.00