The ANSS event ID is uw10826768 and the event page is at https://earthquake.usgs.gov/earthquakes/eventpage/uw10826768/executive.
2011/07/24 12:19:28 47.708 -123.178 40.6 3.85 Washington
USGS/SLU Moment Tensor Solution ENS 2011/07/24 12:19:28:0 47.71 -123.18 40.6 3.8 Washington Stations used: IU.COR UW.DAVN UW.LEBA UW.LON UW.LTY UW.MRBL UW.OMAK UW.STOR UW.TUCA UW.WOLL UW.YACT Filtering commands used: cut o DIST/3.3 -40 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.06 n 3 br c 0.12 0.25 n 4 p 2 Best Fitting Double Couple Mo = 6.10e+21 dyne-cm Mw = 3.79 Z = 45 km Plane Strike Dip Rake NP1 285 50 -60 NP2 63 48 -121 Principal Axes: Axis Value Plunge Azimuth T 6.10e+21 1 354 N 0.00e+00 23 85 P -6.10e+21 67 262 Moment Tensor: (dyne-cm) Component Value Mxx 6.02e+21 Mxy -7.22e+20 Mxz 3.78e+20 Myy -8.19e+20 Myz 2.13e+21 Mzz -5.20e+21 ### T ######## ####### ############ ############################ ############################## ################################## #######------------################# ###-----------------------###########- #-----------------------------########-- ---------------------------------#####-- ------------------------------------##---- -------------- --------------------#---- -------------- P -------------------###--- -------------- -----------------######-- -------------------------------######### -----------------------------########### -------------------------############# #--------------------############### #####---------#################### ############################## ############################ ###################### ############## Global CMT Convention Moment Tensor: R T P -5.20e+21 3.78e+20 -2.13e+21 3.78e+20 6.02e+21 7.22e+20 -2.13e+21 7.22e+20 -8.19e+20 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20110724121928/index.html |
STK = 285 DIP = 50 RAKE = -60 MW = 3.79 HS = 45.0
The NDK file is 20110724121928.ndk The waveform inversion is preferred.
Given the availability of digital waveforms for determination of the moment tensor, this section documents the added processing leading to mLg, if appropriate to the region, and ML by application of the respective IASPEI formulae. As a research study, the linear distance term of the IASPEI formula for ML is adjusted to remove a linear distance trend in residuals to give a regionally defined ML. The defined ML uses horizontal component recordings, but the same procedure is applied to the vertical components since there may be some interest in vertical component ground motions. Residual plots versus distance may indicate interesting features of ground motion scaling in some distance ranges. A residual plot of the regionalized magnitude is given as a function of distance and azimuth, since data sets may transcend different wave propagation provinces.
Left: ML computed using the IASPEI formula for Horizontal components. Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
Left: ML computed using the IASPEI formula for Vertical components (research). Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
![]() |
The focal mechanism was determined using broadband seismic waveforms. The location of the event (star) and the stations used for (red) the waveform inversion are shown in the next figure.
![]() |
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green's functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
cut o DIST/3.3 -40 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.06 n 3 br c 0.12 0.25 n 4 p 2The results of this grid search are as follow:
DEPTH STK DIP RAKE MW FIT WVFGRD96 0.5 260 45 95 3.13 0.3618 WVFGRD96 1.0 255 45 90 3.16 0.3513 WVFGRD96 2.0 250 40 80 3.25 0.4247 WVFGRD96 3.0 250 40 80 3.30 0.4273 WVFGRD96 4.0 245 50 70 3.33 0.4142 WVFGRD96 5.0 240 55 65 3.34 0.4064 WVFGRD96 6.0 50 70 55 3.32 0.4017 WVFGRD96 7.0 50 70 50 3.31 0.3981 WVFGRD96 8.0 55 70 65 3.38 0.4076 WVFGRD96 9.0 60 65 70 3.39 0.4089 WVFGRD96 10.0 60 65 65 3.38 0.4106 WVFGRD96 11.0 55 65 60 3.37 0.4151 WVFGRD96 12.0 60 60 60 3.38 0.4282 WVFGRD96 13.0 55 60 55 3.38 0.4404 WVFGRD96 14.0 55 60 50 3.39 0.4507 WVFGRD96 15.0 55 60 50 3.39 0.4592 WVFGRD96 16.0 55 60 45 3.40 0.4662 WVFGRD96 17.0 55 60 45 3.41 0.4721 WVFGRD96 18.0 55 60 45 3.42 0.4767 WVFGRD96 19.0 50 65 40 3.42 0.4801 WVFGRD96 20.0 50 65 40 3.43 0.4831 WVFGRD96 21.0 55 65 45 3.44 0.4856 WVFGRD96 22.0 105 50 -45 3.44 0.4903 WVFGRD96 23.0 105 50 -45 3.45 0.4977 WVFGRD96 24.0 110 55 -40 3.46 0.5048 WVFGRD96 25.0 110 50 -40 3.47 0.5118 WVFGRD96 26.0 295 55 -40 3.49 0.5277 WVFGRD96 27.0 295 55 -40 3.50 0.5418 WVFGRD96 28.0 300 60 -40 3.52 0.5561 WVFGRD96 29.0 300 60 -40 3.53 0.5701 WVFGRD96 30.0 300 60 -40 3.54 0.5834 WVFGRD96 31.0 300 60 -40 3.55 0.5959 WVFGRD96 32.0 300 60 -40 3.57 0.6076 WVFGRD96 33.0 300 60 -40 3.58 0.6187 WVFGRD96 34.0 300 60 -40 3.59 0.6293 WVFGRD96 35.0 300 60 -40 3.60 0.6390 WVFGRD96 36.0 300 60 -40 3.61 0.6477 WVFGRD96 37.0 295 55 -45 3.62 0.6561 WVFGRD96 38.0 295 55 -45 3.64 0.6637 WVFGRD96 39.0 290 55 -50 3.65 0.6709 WVFGRD96 40.0 290 50 -55 3.74 0.6873 WVFGRD96 41.0 290 50 -55 3.75 0.6924 WVFGRD96 42.0 290 50 -55 3.76 0.6956 WVFGRD96 43.0 285 50 -55 3.77 0.6975 WVFGRD96 44.0 285 50 -60 3.78 0.6986 WVFGRD96 45.0 285 50 -60 3.79 0.6986 WVFGRD96 46.0 285 50 -60 3.79 0.6970 WVFGRD96 47.0 285 50 -60 3.80 0.6941 WVFGRD96 48.0 280 50 -60 3.80 0.6909 WVFGRD96 49.0 280 50 -65 3.81 0.6870 WVFGRD96 50.0 280 50 -65 3.82 0.6825 WVFGRD96 51.0 280 50 -65 3.82 0.6769 WVFGRD96 52.0 275 50 -65 3.83 0.6711 WVFGRD96 53.0 275 50 -70 3.84 0.6655 WVFGRD96 54.0 275 50 -70 3.84 0.6589 WVFGRD96 55.0 275 50 -70 3.84 0.6516 WVFGRD96 56.0 270 50 -75 3.85 0.6439 WVFGRD96 57.0 270 50 -75 3.85 0.6371 WVFGRD96 58.0 270 50 -75 3.86 0.6296 WVFGRD96 59.0 270 50 -75 3.86 0.6217 WVFGRD96 60.0 275 55 -65 3.85 0.6147 WVFGRD96 61.0 275 55 -70 3.86 0.6081 WVFGRD96 62.0 270 55 -70 3.86 0.6021 WVFGRD96 63.0 270 55 -70 3.86 0.5961 WVFGRD96 64.0 270 55 -75 3.87 0.5898 WVFGRD96 65.0 325 75 -50 3.86 0.5798 WVFGRD96 66.0 325 75 -50 3.87 0.5782 WVFGRD96 67.0 325 75 -50 3.87 0.5762 WVFGRD96 68.0 325 75 -50 3.87 0.5738 WVFGRD96 69.0 325 75 -50 3.87 0.5711
The best solution is
WVFGRD96 45.0 285 50 -60 3.79 0.6986
The mechanism corresponding to the best fit is
![]() |
|
The best fit as a function of depth is given in the following figure:
![]() |
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed, the velocity model used in the predictions may not be perfect and the epicentral parameters may be be off. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
cut o DIST/3.3 -40 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.06 n 3 br c 0.12 0.25 n 4 p 2
![]() |
Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated. The time scale is relative to the first trace sample. |
![]() |
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to the waveforms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
The WUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows (The format is in the model96 format of Computer Programs in Seismology).
MODEL.01 Model after 8 iterations ISOTROPIC KGS FLAT EARTH 1-D CONSTANT VELOCITY LINE08 LINE09 LINE10 LINE11 H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS 1.9000 3.4065 2.0089 2.2150 0.302E-02 0.679E-02 0.00 0.00 1.00 1.00 6.1000 5.5445 3.2953 2.6089 0.349E-02 0.784E-02 0.00 0.00 1.00 1.00 13.0000 6.2708 3.7396 2.7812 0.212E-02 0.476E-02 0.00 0.00 1.00 1.00 19.0000 6.4075 3.7680 2.8223 0.111E-02 0.249E-02 0.00 0.00 1.00 1.00 0.0000 7.9000 4.6200 3.2760 0.164E-10 0.370E-10 0.00 0.00 1.00 1.00