The ANSS event ID is ak0119a690lk and the event page is at https://earthquake.usgs.gov/earthquakes/eventpage/ak0119a690lk/executive.
2011/07/21 06:20:11 60.031 -152.831 92.7 3.7 Alaska
USGS/SLU Moment Tensor Solution ENS 2011/07/21 06:20:11:0 60.03 -152.83 92.7 3.7 Alaska Stations used: AK.CNP AK.FIB AK.GHO AK.HOM AK.SAW AK.SKN AK.SSN AK.SWD AT.PMR AT.SVW2 II.KDAK Filtering commands used: hp c 0.02 n 3 lp c 0.10 n 3 Best Fitting Double Couple Mo = 3.31e+22 dyne-cm Mw = 4.28 Z = 116 km Plane Strike Dip Rake NP1 55 60 40 NP2 302 56 143 Principal Axes: Axis Value Plunge Azimuth T 3.31e+22 48 270 N 0.00e+00 42 86 P -3.31e+22 2 178 Moment Tensor: (dyne-cm) Component Value Mxx -3.30e+22 Mxy 1.15e+21 Mxz 1.44e+21 Myy 1.46e+22 Myz -1.65e+22 Mzz 1.84e+22 -------------- ---------------------- ---------------------------- ------------------------------ ---######------------------------- #################------------------# ######################-------------### ##########################---------##### ############################-------##### ######### ###################---######## ######### T ############################## ######### ###################---######## ##############################------###### ##########################----------#### ########################-------------### ####################----------------## ###############--------------------# ########-------------------------- ------------------------------ ---------------------------- ---------- --------- ------ P ----- Global CMT Convention Moment Tensor: R T P 1.84e+22 1.44e+21 1.65e+22 1.44e+21 -3.30e+22 -1.15e+21 1.65e+22 -1.15e+21 1.46e+22 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20110721062011/index.html |
STK = 55 DIP = 60 RAKE = 40 MW = 4.28 HS = 116.0
The NDK file is 20110721062011.ndk The waveform inversion is preferred.
Given the availability of digital waveforms for determination of the moment tensor, this section documents the added processing leading to mLg, if appropriate to the region, and ML by application of the respective IASPEI formulae. As a research study, the linear distance term of the IASPEI formula for ML is adjusted to remove a linear distance trend in residuals to give a regionally defined ML. The defined ML uses horizontal component recordings, but the same procedure is applied to the vertical components since there may be some interest in vertical component ground motions. Residual plots versus distance may indicate interesting features of ground motion scaling in some distance ranges. A residual plot of the regionalized magnitude is given as a function of distance and azimuth, since data sets may transcend different wave propagation provinces.
Left: ML computed using the IASPEI formula for Horizontal components. Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
Left: ML computed using the IASPEI formula for Vertical components (research). Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
![]() |
The focal mechanism was determined using broadband seismic waveforms. The location of the event (star) and the stations used for (red) the waveform inversion are shown in the next figure.
![]() |
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green's functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
hp c 0.02 n 3 lp c 0.10 n 3The results of this grid search are as follow:
DEPTH STK DIP RAKE MW FIT WVFGRD96 50.0 50 70 -10 4.10 0.2975 WVFGRD96 51.0 50 70 -10 4.11 0.2985 WVFGRD96 52.0 225 70 -10 4.15 0.3004 WVFGRD96 53.0 225 70 -10 4.15 0.3013 WVFGRD96 54.0 220 70 -20 4.15 0.3042 WVFGRD96 55.0 220 70 -20 4.16 0.3067 WVFGRD96 56.0 220 70 -20 4.17 0.3084 WVFGRD96 57.0 220 75 -25 4.17 0.3123 WVFGRD96 58.0 220 75 -25 4.17 0.3158 WVFGRD96 59.0 220 75 -25 4.18 0.3175 WVFGRD96 60.0 220 75 -25 4.18 0.3209 WVFGRD96 61.0 220 75 -25 4.19 0.3237 WVFGRD96 62.0 220 75 -25 4.20 0.3258 WVFGRD96 63.0 220 75 -25 4.20 0.3286 WVFGRD96 64.0 220 75 -25 4.20 0.3285 WVFGRD96 65.0 220 80 -25 4.19 0.3321 WVFGRD96 66.0 220 80 -25 4.20 0.3336 WVFGRD96 67.0 220 80 -25 4.20 0.3354 WVFGRD96 68.0 220 80 -25 4.21 0.3374 WVFGRD96 69.0 220 80 -25 4.21 0.3388 WVFGRD96 70.0 220 80 -25 4.21 0.3399 WVFGRD96 71.0 55 80 20 4.22 0.3440 WVFGRD96 72.0 55 75 20 4.21 0.3466 WVFGRD96 73.0 55 75 20 4.22 0.3473 WVFGRD96 74.0 55 75 20 4.22 0.3507 WVFGRD96 75.0 50 70 30 4.19 0.3525 WVFGRD96 76.0 50 70 30 4.19 0.3549 WVFGRD96 77.0 50 70 30 4.20 0.3572 WVFGRD96 78.0 50 70 30 4.20 0.3585 WVFGRD96 79.0 50 70 30 4.20 0.3614 WVFGRD96 80.0 50 70 30 4.20 0.3629 WVFGRD96 81.0 55 70 30 4.23 0.3653 WVFGRD96 82.0 50 70 35 4.21 0.3664 WVFGRD96 83.0 55 65 35 4.22 0.3687 WVFGRD96 84.0 55 65 35 4.22 0.3700 WVFGRD96 85.0 55 65 35 4.22 0.3724 WVFGRD96 86.0 55 65 35 4.23 0.3744 WVFGRD96 87.0 55 65 35 4.23 0.3755 WVFGRD96 88.0 55 65 35 4.23 0.3778 WVFGRD96 89.0 55 65 35 4.23 0.3783 WVFGRD96 90.0 55 65 35 4.24 0.3818 WVFGRD96 91.0 55 65 35 4.24 0.3822 WVFGRD96 92.0 55 65 35 4.24 0.3848 WVFGRD96 93.0 55 65 35 4.24 0.3866 WVFGRD96 94.0 55 65 35 4.25 0.3875 WVFGRD96 95.0 55 65 35 4.25 0.3894 WVFGRD96 96.0 55 65 35 4.25 0.3911 WVFGRD96 97.0 55 65 35 4.25 0.3919 WVFGRD96 98.0 55 60 35 4.24 0.3943 WVFGRD96 99.0 55 60 35 4.24 0.3936 WVFGRD96 100.0 55 60 35 4.24 0.3970 WVFGRD96 101.0 55 60 35 4.24 0.3978 WVFGRD96 102.0 55 60 40 4.25 0.3982 WVFGRD96 103.0 55 60 40 4.25 0.4004 WVFGRD96 104.0 55 60 40 4.25 0.4022 WVFGRD96 105.0 55 60 40 4.25 0.4019 WVFGRD96 106.0 55 60 40 4.26 0.4043 WVFGRD96 107.0 55 60 40 4.26 0.4054 WVFGRD96 108.0 55 60 40 4.26 0.4045 WVFGRD96 109.0 55 60 40 4.26 0.4074 WVFGRD96 110.0 55 60 40 4.27 0.4073 WVFGRD96 111.0 55 60 40 4.27 0.4073 WVFGRD96 112.0 55 60 40 4.27 0.4089 WVFGRD96 113.0 55 60 40 4.27 0.4093 WVFGRD96 114.0 55 60 40 4.27 0.4082 WVFGRD96 115.0 55 60 40 4.28 0.4096 WVFGRD96 116.0 55 60 40 4.28 0.4101 WVFGRD96 117.0 55 60 40 4.28 0.4090 WVFGRD96 118.0 55 60 40 4.28 0.4100 WVFGRD96 119.0 55 60 40 4.28 0.4100 WVFGRD96 120.0 55 60 40 4.28 0.4088 WVFGRD96 121.0 55 60 40 4.29 0.4091 WVFGRD96 122.0 55 60 40 4.29 0.4094 WVFGRD96 123.0 50 60 40 4.28 0.4086 WVFGRD96 124.0 50 60 40 4.28 0.4082 WVFGRD96 125.0 50 60 40 4.28 0.4088 WVFGRD96 126.0 50 60 40 4.28 0.4083 WVFGRD96 127.0 50 60 40 4.28 0.4075 WVFGRD96 128.0 50 60 40 4.28 0.4068 WVFGRD96 129.0 55 55 40 4.28 0.4073
The best solution is
WVFGRD96 116.0 55 60 40 4.28 0.4101
The mechanism corresponding to the best fit is
![]() |
|
The best fit as a function of depth is given in the following figure:
![]() |
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed, the velocity model used in the predictions may not be perfect and the epicentral parameters may be be off. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
hp c 0.02 n 3 lp c 0.10 n 3
![]() |
Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated. The time scale is relative to the first trace sample. |
![]() |
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to the waveforms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
The WUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows (The format is in the model96 format of Computer Programs in Seismology).
MODEL.01 Model after 8 iterations ISOTROPIC KGS FLAT EARTH 1-D CONSTANT VELOCITY LINE08 LINE09 LINE10 LINE11 H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS 1.9000 3.4065 2.0089 2.2150 0.302E-02 0.679E-02 0.00 0.00 1.00 1.00 6.1000 5.5445 3.2953 2.6089 0.349E-02 0.784E-02 0.00 0.00 1.00 1.00 13.0000 6.2708 3.7396 2.7812 0.212E-02 0.476E-02 0.00 0.00 1.00 1.00 19.0000 6.4075 3.7680 2.8223 0.111E-02 0.249E-02 0.00 0.00 1.00 1.00 0.0000 7.9000 4.6200 3.2760 0.164E-10 0.370E-10 0.00 0.00 1.00 1.00