The ANSS event ID is ak0118i0juhl and the event page is at https://earthquake.usgs.gov/earthquakes/eventpage/ak0118i0juhl/executive.
2011/07/04 03:57:55 60.238 -152.802 111.9 4.2 Alaska
USGS/SLU Moment Tensor Solution ENS 2011/07/04 03:57:55:0 60.24 -152.80 111.9 4.2 Alaska Stations used: AK.BPAW AK.CAST AK.CNP AK.KTH AK.PPLA AK.RC01 AK.SSN AK.TRF AT.OHAK AT.PMR AT.SVW2 II.KDAK Filtering commands used: hp c 0.02 n 3 lp c 0.06 n 3 Best Fitting Double Couple Mo = 2.43e+22 dyne-cm Mw = 4.19 Z = 124 km Plane Strike Dip Rake NP1 259 71 114 NP2 25 30 40 Principal Axes: Axis Value Plunge Azimuth T 2.43e+22 57 201 N 0.00e+00 23 71 P -2.43e+22 23 331 Moment Tensor: (dyne-cm) Component Value Mxx -9.53e+21 Mxy 1.11e+22 Mxz -1.79e+22 Myy -3.98e+21 Myz 2.65e+20 Mzz 1.35e+22 -------------- ---------------------# ---- -------------------## ----- P --------------------## ------- ---------------------### --------------------------------#### ----------------------------------#### -----------------------------------##### -------------------################----# -------------#######################------ --------############################------ -----###############################------ --##################################------ ##################################------ ############### ###############------- ############## T ##############------- ############# #############------- ##########################-------- #######################------- ###################--------- #############--------- -------------- Global CMT Convention Moment Tensor: R T P 1.35e+22 -1.79e+22 -2.65e+20 -1.79e+22 -9.53e+21 -1.11e+22 -2.65e+20 -1.11e+22 -3.98e+21 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20110704035755/index.html |
STK = 25 DIP = 30 RAKE = 40 MW = 4.19 HS = 124.0
The NDK file is 20110704035755.ndk The waveform inversion is preferred.
Given the availability of digital waveforms for determination of the moment tensor, this section documents the added processing leading to mLg, if appropriate to the region, and ML by application of the respective IASPEI formulae. As a research study, the linear distance term of the IASPEI formula for ML is adjusted to remove a linear distance trend in residuals to give a regionally defined ML. The defined ML uses horizontal component recordings, but the same procedure is applied to the vertical components since there may be some interest in vertical component ground motions. Residual plots versus distance may indicate interesting features of ground motion scaling in some distance ranges. A residual plot of the regionalized magnitude is given as a function of distance and azimuth, since data sets may transcend different wave propagation provinces.
Left: ML computed using the IASPEI formula for Horizontal components. Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
Left: ML computed using the IASPEI formula for Vertical components (research). Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
![]() |
The focal mechanism was determined using broadband seismic waveforms. The location of the event (star) and the stations used for (red) the waveform inversion are shown in the next figure.
![]() |
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green's functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
hp c 0.02 n 3 lp c 0.06 n 3The results of this grid search are as follow:
DEPTH STK DIP RAKE MW FIT WVFGRD96 0.5 85 50 -70 3.27 0.1748 WVFGRD96 1.0 75 50 -85 3.31 0.1880 WVFGRD96 2.0 5 45 -95 3.39 0.2345 WVFGRD96 3.0 165 45 -95 3.44 0.2554 WVFGRD96 4.0 5 50 -60 3.46 0.2598 WVFGRD96 5.0 20 80 5 3.43 0.2736 WVFGRD96 6.0 20 80 5 3.46 0.2873 WVFGRD96 7.0 20 80 5 3.48 0.3008 WVFGRD96 8.0 20 80 5 3.52 0.3141 WVFGRD96 9.0 20 80 10 3.54 0.3218 WVFGRD96 10.0 20 70 -20 3.54 0.3301 WVFGRD96 11.0 210 70 25 3.54 0.3416 WVFGRD96 12.0 210 70 25 3.56 0.3533 WVFGRD96 13.0 210 70 25 3.57 0.3639 WVFGRD96 14.0 210 70 25 3.58 0.3735 WVFGRD96 15.0 210 70 25 3.60 0.3825 WVFGRD96 16.0 210 70 25 3.61 0.3918 WVFGRD96 17.0 210 70 25 3.62 0.4001 WVFGRD96 18.0 210 70 25 3.63 0.4075 WVFGRD96 19.0 210 70 25 3.64 0.4143 WVFGRD96 20.0 210 70 25 3.65 0.4220 WVFGRD96 21.0 210 70 25 3.66 0.4283 WVFGRD96 22.0 210 75 30 3.68 0.4342 WVFGRD96 23.0 205 70 25 3.71 0.4408 WVFGRD96 24.0 210 75 35 3.71 0.4475 WVFGRD96 25.0 210 75 35 3.72 0.4533 WVFGRD96 26.0 205 75 30 3.74 0.4585 WVFGRD96 27.0 205 75 30 3.75 0.4644 WVFGRD96 28.0 205 75 30 3.76 0.4688 WVFGRD96 29.0 205 75 30 3.77 0.4716 WVFGRD96 30.0 205 75 30 3.78 0.4748 WVFGRD96 31.0 205 75 30 3.79 0.4778 WVFGRD96 32.0 205 75 30 3.80 0.4794 WVFGRD96 33.0 210 75 35 3.80 0.4796 WVFGRD96 34.0 205 75 30 3.82 0.4806 WVFGRD96 35.0 205 75 30 3.83 0.4820 WVFGRD96 36.0 210 75 30 3.82 0.4830 WVFGRD96 37.0 210 75 30 3.83 0.4840 WVFGRD96 38.0 210 80 35 3.85 0.4839 WVFGRD96 39.0 210 75 30 3.86 0.4857 WVFGRD96 40.0 210 75 45 3.95 0.4823 WVFGRD96 41.0 210 75 45 3.96 0.4813 WVFGRD96 42.0 210 75 45 3.97 0.4795 WVFGRD96 43.0 210 75 45 3.98 0.4771 WVFGRD96 44.0 210 75 45 3.99 0.4745 WVFGRD96 45.0 210 75 45 4.00 0.4715 WVFGRD96 46.0 210 75 45 4.00 0.4681 WVFGRD96 47.0 210 75 45 4.01 0.4643 WVFGRD96 48.0 210 75 45 4.02 0.4602 WVFGRD96 49.0 215 70 45 4.01 0.4559 WVFGRD96 50.0 215 70 45 4.01 0.4518 WVFGRD96 51.0 215 70 45 4.02 0.4476 WVFGRD96 52.0 215 70 45 4.02 0.4435 WVFGRD96 53.0 215 70 45 4.03 0.4392 WVFGRD96 54.0 215 70 45 4.03 0.4347 WVFGRD96 55.0 215 70 40 4.02 0.4302 WVFGRD96 56.0 215 70 40 4.02 0.4257 WVFGRD96 57.0 20 70 25 4.03 0.4286 WVFGRD96 58.0 20 70 25 4.04 0.4344 WVFGRD96 59.0 25 65 30 4.03 0.4401 WVFGRD96 60.0 25 65 30 4.03 0.4458 WVFGRD96 61.0 25 65 30 4.03 0.4511 WVFGRD96 62.0 25 65 30 4.04 0.4560 WVFGRD96 63.0 25 65 35 4.06 0.4608 WVFGRD96 64.0 25 65 35 4.06 0.4657 WVFGRD96 65.0 25 65 35 4.06 0.4713 WVFGRD96 66.0 25 65 35 4.07 0.4762 WVFGRD96 67.0 20 65 30 4.09 0.4802 WVFGRD96 68.0 20 65 30 4.09 0.4837 WVFGRD96 69.0 20 65 30 4.09 0.4883 WVFGRD96 70.0 20 65 35 4.11 0.4924 WVFGRD96 71.0 20 65 35 4.11 0.4959 WVFGRD96 72.0 20 65 35 4.11 0.4985 WVFGRD96 73.0 20 65 35 4.12 0.5027 WVFGRD96 74.0 20 65 35 4.12 0.5055 WVFGRD96 75.0 20 65 35 4.12 0.5073 WVFGRD96 76.0 20 65 35 4.12 0.5116 WVFGRD96 77.0 20 65 35 4.12 0.5146 WVFGRD96 78.0 20 65 35 4.12 0.5159 WVFGRD96 79.0 15 45 10 4.10 0.5201 WVFGRD96 80.0 20 40 20 4.09 0.5265 WVFGRD96 81.0 15 40 15 4.12 0.5327 WVFGRD96 82.0 15 40 15 4.12 0.5404 WVFGRD96 83.0 15 40 15 4.12 0.5463 WVFGRD96 84.0 15 40 15 4.12 0.5528 WVFGRD96 85.0 20 35 25 4.12 0.5588 WVFGRD96 86.0 15 40 20 4.14 0.5638 WVFGRD96 87.0 15 40 20 4.15 0.5709 WVFGRD96 88.0 15 35 20 4.15 0.5760 WVFGRD96 89.0 15 35 20 4.15 0.5823 WVFGRD96 90.0 15 35 20 4.15 0.5874 WVFGRD96 91.0 15 35 20 4.15 0.5923 WVFGRD96 92.0 15 35 20 4.15 0.5976 WVFGRD96 93.0 15 35 20 4.16 0.6013 WVFGRD96 94.0 20 35 30 4.16 0.6066 WVFGRD96 95.0 20 35 30 4.16 0.6095 WVFGRD96 96.0 20 30 30 4.16 0.6148 WVFGRD96 97.0 20 30 30 4.17 0.6171 WVFGRD96 98.0 15 35 25 4.18 0.6223 WVFGRD96 99.0 20 30 30 4.17 0.6246 WVFGRD96 100.0 20 30 30 4.17 0.6291 WVFGRD96 101.0 15 35 25 4.18 0.6307 WVFGRD96 102.0 15 35 25 4.18 0.6347 WVFGRD96 103.0 15 35 25 4.18 0.6360 WVFGRD96 104.0 15 35 25 4.19 0.6397 WVFGRD96 105.0 15 35 25 4.19 0.6403 WVFGRD96 106.0 20 30 30 4.17 0.6439 WVFGRD96 107.0 25 30 40 4.18 0.6445 WVFGRD96 108.0 25 30 40 4.19 0.6477 WVFGRD96 109.0 25 30 40 4.19 0.6483 WVFGRD96 110.0 25 30 40 4.19 0.6512 WVFGRD96 111.0 25 30 40 4.19 0.6520 WVFGRD96 112.0 25 30 40 4.19 0.6536 WVFGRD96 113.0 25 30 40 4.19 0.6547 WVFGRD96 114.0 25 30 40 4.19 0.6557 WVFGRD96 115.0 25 30 40 4.19 0.6571 WVFGRD96 116.0 25 30 40 4.19 0.6568 WVFGRD96 117.0 25 30 40 4.19 0.6588 WVFGRD96 118.0 25 30 40 4.19 0.6580 WVFGRD96 119.0 25 30 40 4.19 0.6598 WVFGRD96 120.0 25 30 40 4.19 0.6597 WVFGRD96 121.0 25 30 40 4.19 0.6601 WVFGRD96 122.0 25 30 40 4.19 0.6607 WVFGRD96 123.0 25 30 40 4.19 0.6596 WVFGRD96 124.0 25 30 40 4.19 0.6611 WVFGRD96 125.0 25 30 40 4.19 0.6599 WVFGRD96 126.0 25 30 40 4.19 0.6605 WVFGRD96 127.0 25 30 40 4.20 0.6605 WVFGRD96 128.0 25 30 40 4.20 0.6593 WVFGRD96 129.0 25 30 40 4.20 0.6600 WVFGRD96 130.0 25 30 40 4.20 0.6586 WVFGRD96 131.0 25 30 40 4.20 0.6591 WVFGRD96 132.0 25 30 40 4.20 0.6585 WVFGRD96 133.0 25 30 40 4.20 0.6567 WVFGRD96 134.0 25 30 40 4.20 0.6578 WVFGRD96 135.0 25 30 40 4.20 0.6561 WVFGRD96 136.0 25 30 40 4.20 0.6556 WVFGRD96 137.0 25 30 40 4.20 0.6556 WVFGRD96 138.0 25 30 40 4.20 0.6531 WVFGRD96 139.0 25 30 40 4.20 0.6537
The best solution is
WVFGRD96 124.0 25 30 40 4.19 0.6611
The mechanism corresponding to the best fit is
![]() |
|
The best fit as a function of depth is given in the following figure:
![]() |
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed, the velocity model used in the predictions may not be perfect and the epicentral parameters may be be off. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
hp c 0.02 n 3 lp c 0.06 n 3
![]() |
Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated. The time scale is relative to the first trace sample. |
![]() |
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to the waveforms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
The WUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows (The format is in the model96 format of Computer Programs in Seismology).
MODEL.01 Model after 8 iterations ISOTROPIC KGS FLAT EARTH 1-D CONSTANT VELOCITY LINE08 LINE09 LINE10 LINE11 H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS 1.9000 3.4065 2.0089 2.2150 0.302E-02 0.679E-02 0.00 0.00 1.00 1.00 6.1000 5.5445 3.2953 2.6089 0.349E-02 0.784E-02 0.00 0.00 1.00 1.00 13.0000 6.2708 3.7396 2.7812 0.212E-02 0.476E-02 0.00 0.00 1.00 1.00 19.0000 6.4075 3.7680 2.8223 0.111E-02 0.249E-02 0.00 0.00 1.00 1.00 0.0000 7.9000 4.6200 3.2760 0.164E-10 0.370E-10 0.00 0.00 1.00 1.00