The ANSS event ID is ak0118eu5xs2 and the event page is at https://earthquake.usgs.gov/earthquakes/eventpage/ak0118eu5xs2/executive.
2011/07/02 11:45:06 63.110 -150.843 122.9 4.3 Alaska
USGS/SLU Moment Tensor Solution ENS 2011/07/02 11:45:06:0 63.11 -150.84 122.9 4.3 Alaska Stations used: AK.BPAW AK.BRLK AK.CAST AK.CCB AK.DHY AK.FIB AK.KLU AK.KTH AK.MCK AK.MLY AK.PPLA AK.RC01 AK.SAW AK.SSN AK.SWD AK.TRF AK.WRH AT.PMR IU.COLA Filtering commands used: hp c 0.02 n 3 lp c 0.06 n 3 Best Fitting Double Couple Mo = 3.67e+22 dyne-cm Mw = 4.31 Z = 132 km Plane Strike Dip Rake NP1 55 75 85 NP2 254 16 108 Principal Axes: Axis Value Plunge Azimuth T 3.67e+22 60 318 N 0.00e+00 5 56 P -3.67e+22 30 149 Moment Tensor: (dyne-cm) Component Value Mxx -1.52e+22 Mxy 7.54e+21 Mxz 2.55e+22 Myy -3.11e+21 Myz -1.89e+22 Mzz 1.83e+22 -------------- ---------#######------ ------##################---- ----########################-- ---##############################- ---###############################-# --########## ###################---- --########### T #################------- -############ ###############--------- --#############################----------- -###########################-------------- -#########################---------------- -#######################------------------ ####################-------------------- #################----------------------- #############------------------------- #######----------------- --------- ----------------------- P -------- --------------------- ------ ---------------------------- ---------------------- -------------- Global CMT Convention Moment Tensor: R T P 1.83e+22 2.55e+22 1.89e+22 2.55e+22 -1.52e+22 -7.54e+21 1.89e+22 -7.54e+21 -3.11e+21 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20110702114506/index.html |
STK = 55 DIP = 75 RAKE = 85 MW = 4.31 HS = 132.0
The NDK file is 20110702114506.ndk The waveform inversion is preferred.
Given the availability of digital waveforms for determination of the moment tensor, this section documents the added processing leading to mLg, if appropriate to the region, and ML by application of the respective IASPEI formulae. As a research study, the linear distance term of the IASPEI formula for ML is adjusted to remove a linear distance trend in residuals to give a regionally defined ML. The defined ML uses horizontal component recordings, but the same procedure is applied to the vertical components since there may be some interest in vertical component ground motions. Residual plots versus distance may indicate interesting features of ground motion scaling in some distance ranges. A residual plot of the regionalized magnitude is given as a function of distance and azimuth, since data sets may transcend different wave propagation provinces.
Left: ML computed using the IASPEI formula for Horizontal components. Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
Left: ML computed using the IASPEI formula for Vertical components (research). Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
![]() |
The focal mechanism was determined using broadband seismic waveforms. The location of the event (star) and the stations used for (red) the waveform inversion are shown in the next figure.
![]() |
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green's functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
hp c 0.02 n 3 lp c 0.06 n 3The results of this grid search are as follow:
DEPTH STK DIP RAKE MW FIT WVFGRD96 0.5 110 40 -70 3.38 0.2149 WVFGRD96 1.0 105 40 -80 3.42 0.2169 WVFGRD96 2.0 115 45 -65 3.52 0.2800 WVFGRD96 3.0 135 50 -40 3.56 0.2894 WVFGRD96 4.0 145 65 -15 3.54 0.2930 WVFGRD96 5.0 335 65 20 3.57 0.3044 WVFGRD96 6.0 335 65 20 3.60 0.3205 WVFGRD96 7.0 335 65 15 3.61 0.3315 WVFGRD96 8.0 340 60 20 3.66 0.3457 WVFGRD96 9.0 340 60 20 3.68 0.3557 WVFGRD96 10.0 340 60 20 3.69 0.3646 WVFGRD96 11.0 340 55 15 3.70 0.3676 WVFGRD96 12.0 340 55 15 3.71 0.3754 WVFGRD96 13.0 340 55 20 3.72 0.3788 WVFGRD96 14.0 340 55 20 3.73 0.3836 WVFGRD96 15.0 340 55 20 3.73 0.3884 WVFGRD96 16.0 340 60 20 3.74 0.3876 WVFGRD96 17.0 340 60 20 3.75 0.3896 WVFGRD96 18.0 340 60 20 3.75 0.3877 WVFGRD96 19.0 345 60 20 3.77 0.3865 WVFGRD96 20.0 345 60 20 3.78 0.3872 WVFGRD96 21.0 230 80 -35 3.76 0.3875 WVFGRD96 22.0 230 80 -35 3.77 0.3900 WVFGRD96 23.0 230 80 -35 3.78 0.3922 WVFGRD96 24.0 230 80 -35 3.78 0.3843 WVFGRD96 25.0 215 85 -35 3.79 0.3877 WVFGRD96 26.0 35 85 30 3.82 0.3912 WVFGRD96 27.0 35 85 30 3.83 0.3946 WVFGRD96 28.0 35 85 30 3.83 0.3881 WVFGRD96 29.0 35 85 30 3.84 0.3932 WVFGRD96 30.0 35 90 30 3.84 0.3970 WVFGRD96 31.0 35 90 30 3.85 0.4022 WVFGRD96 32.0 35 90 30 3.86 0.3957 WVFGRD96 33.0 40 85 30 3.87 0.4006 WVFGRD96 34.0 40 85 30 3.88 0.4053 WVFGRD96 35.0 40 85 30 3.89 0.3994 WVFGRD96 36.0 205 25 60 3.91 0.4070 WVFGRD96 37.0 205 25 60 3.92 0.4166 WVFGRD96 38.0 225 20 85 3.92 0.4162 WVFGRD96 39.0 50 70 90 3.93 0.4266 WVFGRD96 40.0 55 70 95 4.07 0.4413 WVFGRD96 41.0 230 20 90 4.08 0.4367 WVFGRD96 42.0 50 70 90 4.09 0.4389 WVFGRD96 43.0 55 70 95 4.09 0.4402 WVFGRD96 44.0 55 70 95 4.10 0.4399 WVFGRD96 45.0 225 20 85 4.11 0.4391 WVFGRD96 46.0 55 70 95 4.11 0.4350 WVFGRD96 47.0 220 20 80 4.12 0.4325 WVFGRD96 48.0 220 20 80 4.12 0.4296 WVFGRD96 49.0 195 70 -15 4.08 0.4358 WVFGRD96 50.0 195 70 -20 4.08 0.4353 WVFGRD96 51.0 195 70 -20 4.09 0.4408 WVFGRD96 52.0 195 70 -20 4.10 0.4454 WVFGRD96 53.0 195 70 -20 4.10 0.4492 WVFGRD96 54.0 195 70 -20 4.11 0.4523 WVFGRD96 55.0 195 70 -20 4.12 0.4560 WVFGRD96 56.0 195 70 -20 4.12 0.4593 WVFGRD96 57.0 195 70 -20 4.13 0.4628 WVFGRD96 58.0 195 70 -20 4.14 0.4665 WVFGRD96 59.0 195 70 -20 4.14 0.4687 WVFGRD96 60.0 195 70 -20 4.15 0.4721 WVFGRD96 61.0 195 70 -20 4.15 0.4737 WVFGRD96 62.0 55 65 80 4.18 0.4743 WVFGRD96 63.0 55 65 80 4.19 0.4852 WVFGRD96 64.0 55 65 80 4.19 0.4958 WVFGRD96 65.0 55 65 80 4.20 0.5067 WVFGRD96 66.0 60 65 85 4.20 0.5166 WVFGRD96 67.0 60 65 85 4.21 0.5263 WVFGRD96 68.0 60 65 85 4.21 0.5359 WVFGRD96 69.0 55 65 80 4.21 0.5443 WVFGRD96 70.0 55 70 80 4.21 0.5538 WVFGRD96 71.0 55 70 80 4.22 0.5641 WVFGRD96 72.0 55 70 80 4.22 0.5735 WVFGRD96 73.0 55 70 80 4.22 0.5842 WVFGRD96 74.0 55 70 80 4.22 0.5931 WVFGRD96 75.0 55 70 80 4.23 0.6013 WVFGRD96 76.0 55 70 80 4.23 0.6111 WVFGRD96 77.0 55 70 80 4.23 0.6197 WVFGRD96 78.0 55 70 80 4.23 0.6262 WVFGRD96 79.0 55 70 80 4.24 0.6347 WVFGRD96 80.0 55 70 80 4.24 0.6431 WVFGRD96 81.0 55 70 80 4.24 0.6498 WVFGRD96 82.0 55 70 80 4.24 0.6575 WVFGRD96 83.0 55 70 80 4.25 0.6651 WVFGRD96 84.0 55 70 80 4.25 0.6723 WVFGRD96 85.0 55 70 80 4.25 0.6782 WVFGRD96 86.0 55 70 80 4.25 0.6846 WVFGRD96 87.0 55 70 80 4.25 0.6915 WVFGRD96 88.0 55 70 80 4.25 0.6962 WVFGRD96 89.0 55 70 80 4.26 0.7024 WVFGRD96 90.0 55 70 80 4.26 0.7079 WVFGRD96 91.0 55 70 80 4.26 0.7126 WVFGRD96 92.0 55 70 80 4.26 0.7177 WVFGRD96 93.0 55 70 80 4.26 0.7223 WVFGRD96 94.0 55 70 80 4.26 0.7273 WVFGRD96 95.0 55 70 80 4.27 0.7313 WVFGRD96 96.0 55 70 80 4.27 0.7352 WVFGRD96 97.0 55 70 80 4.27 0.7397 WVFGRD96 98.0 55 70 80 4.27 0.7432 WVFGRD96 99.0 55 70 80 4.27 0.7462 WVFGRD96 100.0 55 70 80 4.27 0.7503 WVFGRD96 101.0 55 70 80 4.27 0.7531 WVFGRD96 102.0 55 70 80 4.27 0.7557 WVFGRD96 103.0 55 70 80 4.28 0.7588 WVFGRD96 104.0 55 70 80 4.28 0.7612 WVFGRD96 105.0 55 70 80 4.28 0.7638 WVFGRD96 106.0 55 70 80 4.28 0.7658 WVFGRD96 107.0 55 70 80 4.28 0.7680 WVFGRD96 108.0 55 70 80 4.28 0.7699 WVFGRD96 109.0 55 70 80 4.28 0.7722 WVFGRD96 110.0 55 70 80 4.28 0.7733 WVFGRD96 111.0 55 70 80 4.29 0.7750 WVFGRD96 112.0 55 70 80 4.29 0.7768 WVFGRD96 113.0 55 70 80 4.29 0.7779 WVFGRD96 114.0 55 70 80 4.29 0.7788 WVFGRD96 115.0 55 70 80 4.29 0.7803 WVFGRD96 116.0 55 70 80 4.29 0.7811 WVFGRD96 117.0 55 70 80 4.29 0.7819 WVFGRD96 118.0 55 70 80 4.29 0.7830 WVFGRD96 119.0 55 70 80 4.29 0.7835 WVFGRD96 120.0 55 70 80 4.30 0.7843 WVFGRD96 121.0 55 70 80 4.30 0.7849 WVFGRD96 122.0 55 70 80 4.30 0.7854 WVFGRD96 123.0 55 75 80 4.30 0.7860 WVFGRD96 124.0 55 75 80 4.30 0.7858 WVFGRD96 125.0 55 75 80 4.30 0.7867 WVFGRD96 126.0 55 75 80 4.30 0.7866 WVFGRD96 127.0 55 75 80 4.30 0.7874 WVFGRD96 128.0 55 75 80 4.30 0.7875 WVFGRD96 129.0 55 75 85 4.30 0.7880 WVFGRD96 130.0 55 75 85 4.31 0.7877 WVFGRD96 131.0 55 75 85 4.31 0.7874 WVFGRD96 132.0 55 75 85 4.31 0.7884 WVFGRD96 133.0 55 75 85 4.31 0.7883 WVFGRD96 134.0 260 20 110 4.31 0.7883 WVFGRD96 135.0 260 20 110 4.31 0.7876 WVFGRD96 136.0 55 75 85 4.31 0.7872 WVFGRD96 137.0 260 20 110 4.31 0.7877 WVFGRD96 138.0 55 75 85 4.31 0.7875 WVFGRD96 139.0 55 75 85 4.31 0.7864
The best solution is
WVFGRD96 132.0 55 75 85 4.31 0.7884
The mechanism corresponding to the best fit is
![]() |
|
The best fit as a function of depth is given in the following figure:
![]() |
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed, the velocity model used in the predictions may not be perfect and the epicentral parameters may be be off. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
hp c 0.02 n 3 lp c 0.06 n 3
![]() |
Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated. The time scale is relative to the first trace sample. |
![]() |
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to the waveforms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
The WUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows (The format is in the model96 format of Computer Programs in Seismology).
MODEL.01 Model after 8 iterations ISOTROPIC KGS FLAT EARTH 1-D CONSTANT VELOCITY LINE08 LINE09 LINE10 LINE11 H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS 1.9000 3.4065 2.0089 2.2150 0.302E-02 0.679E-02 0.00 0.00 1.00 1.00 6.1000 5.5445 3.2953 2.6089 0.349E-02 0.784E-02 0.00 0.00 1.00 1.00 13.0000 6.2708 3.7396 2.7812 0.212E-02 0.476E-02 0.00 0.00 1.00 1.00 19.0000 6.4075 3.7680 2.8223 0.111E-02 0.249E-02 0.00 0.00 1.00 1.00 0.0000 7.9000 4.6200 3.2760 0.164E-10 0.370E-10 0.00 0.00 1.00 1.00