The ANSS event ID is ak0117oi3hnt and the event page is at https://earthquake.usgs.gov/earthquakes/eventpage/ak0117oi3hnt/executive.
2011/06/16 19:06:05 60.765 -151.076 58.9 5.1 Alaska
USGS/SLU Moment Tensor Solution ENS 2011/06/16 19:06:05:0 60.76 -151.08 58.9 5.1 Alaska Stations used: AK.BPAW AK.BRLK AK.BWN AK.CNP AK.DIV AK.HOM AK.KLU AK.KTH AK.MCK AK.PPLA AK.RC01 AK.RND AK.SAW AK.SCM AK.SSN AK.SWD AT.MENT AT.PMR II.KDAK Filtering commands used: hp c 0.02 n 3 lp c 0.05 n 3 Best Fitting Double Couple Mo = 3.85e+23 dyne-cm Mw = 4.99 Z = 74 km Plane Strike Dip Rake NP1 45 75 20 NP2 310 71 164 Principal Axes: Axis Value Plunge Azimuth T 3.85e+23 25 268 N 0.00e+00 65 80 P -3.85e+23 3 177 Moment Tensor: (dyne-cm) Component Value Mxx -3.82e+23 Mxy 3.29e+22 Mxz 1.44e+22 Myy 3.16e+23 Myz -1.47e+23 Mzz 6.58e+22 -------------- ---------------------- ---------------------------- -----------------------------# ######-------------------------### ############-------------------##### ################---------------####### ####################----------########## ######################-------########### #########################----############# #### ################################### #### T ##################----############# #### #################-------########### #####################----------######### ###################--------------####### ###############------------------##### ############---------------------### ########-------------------------# ###--------------------------- ---------------------------- ----------- -------- ------- P ---- Global CMT Convention Moment Tensor: R T P 6.58e+22 1.44e+22 1.47e+23 1.44e+22 -3.82e+23 -3.29e+22 1.47e+23 -3.29e+22 3.16e+23 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20110616190605/index.html |
STK = 45 DIP = 75 RAKE = 20 MW = 4.99 HS = 74.0
The NDK file is 20110616190605.ndk The waveform inversion is preferred.
The following compares this source inversion to those provided by others. The purpose is to look for major differences and also to note slight differences that might be inherent to the processing procedure. For completeness the USGS/SLU solution is repeated from above.
USGS/SLU Moment Tensor Solution ENS 2011/06/16 19:06:05:0 60.76 -151.08 58.9 5.1 Alaska Stations used: AK.BPAW AK.BRLK AK.BWN AK.CNP AK.DIV AK.HOM AK.KLU AK.KTH AK.MCK AK.PPLA AK.RC01 AK.RND AK.SAW AK.SCM AK.SSN AK.SWD AT.MENT AT.PMR II.KDAK Filtering commands used: hp c 0.02 n 3 lp c 0.05 n 3 Best Fitting Double Couple Mo = 3.85e+23 dyne-cm Mw = 4.99 Z = 74 km Plane Strike Dip Rake NP1 45 75 20 NP2 310 71 164 Principal Axes: Axis Value Plunge Azimuth T 3.85e+23 25 268 N 0.00e+00 65 80 P -3.85e+23 3 177 Moment Tensor: (dyne-cm) Component Value Mxx -3.82e+23 Mxy 3.29e+22 Mxz 1.44e+22 Myy 3.16e+23 Myz -1.47e+23 Mzz 6.58e+22 -------------- ---------------------- ---------------------------- -----------------------------# ######-------------------------### ############-------------------##### ################---------------####### ####################----------########## ######################-------########### #########################----############# #### ################################### #### T ##################----############# #### #################-------########### #####################----------######### ###################--------------####### ###############------------------##### ############---------------------### ########-------------------------# ###--------------------------- ---------------------------- ----------- -------- ------- P ---- Global CMT Convention Moment Tensor: R T P 6.58e+22 1.44e+22 1.47e+23 1.44e+22 -3.82e+23 -3.29e+22 1.47e+23 -3.29e+22 3.16e+23 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20110616190605/index.html |
USGS/SLU Regional Moment Solution 11/06/16 19:06:05.42 Epicenter: 60.807 -151.216 MW 5.0 USGS/SLU REGIONAL MOMENT TENSOR Depth 66 No. of sta: 58 Moment Tensor; Scale 10**16 Nm Mrr= 0.17 Mtt=-3.62 Mpp= 3.45 Mrt= 0.40 Mrp= 1.31 Mtp=-0.15 Principal axes: T Val= 3.91 Plg=19 Azm=270 N -0.23 69 69 P -3.68 7 177 Best Double Couple:Mo=3.8*10**16 NP1:Strike= 45 Dip=81 Slip= 19 NP2: 312 71 171 |
Given the availability of digital waveforms for determination of the moment tensor, this section documents the added processing leading to mLg, if appropriate to the region, and ML by application of the respective IASPEI formulae. As a research study, the linear distance term of the IASPEI formula for ML is adjusted to remove a linear distance trend in residuals to give a regionally defined ML. The defined ML uses horizontal component recordings, but the same procedure is applied to the vertical components since there may be some interest in vertical component ground motions. Residual plots versus distance may indicate interesting features of ground motion scaling in some distance ranges. A residual plot of the regionalized magnitude is given as a function of distance and azimuth, since data sets may transcend different wave propagation provinces.
Left: ML computed using the IASPEI formula for Horizontal components. Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
Left: ML computed using the IASPEI formula for Vertical components (research). Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
![]() |
The focal mechanism was determined using broadband seismic waveforms. The location of the event (star) and the stations used for (red) the waveform inversion are shown in the next figure.
![]() |
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green's functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
hp c 0.02 n 3 lp c 0.05 n 3The results of this grid search are as follow:
DEPTH STK DIP RAKE MW FIT WVFGRD96 0.5 315 70 15 4.16 0.2135 WVFGRD96 1.0 310 85 0 4.17 0.2327 WVFGRD96 2.0 315 75 15 4.28 0.2936 WVFGRD96 3.0 130 90 0 4.31 0.3231 WVFGRD96 4.0 310 85 0 4.34 0.3426 WVFGRD96 5.0 220 80 15 4.38 0.3572 WVFGRD96 6.0 220 80 15 4.41 0.3817 WVFGRD96 7.0 35 90 -5 4.44 0.4075 WVFGRD96 8.0 220 85 15 4.47 0.4351 WVFGRD96 9.0 220 85 15 4.49 0.4546 WVFGRD96 10.0 220 85 15 4.51 0.4696 WVFGRD96 11.0 40 90 -10 4.52 0.4766 WVFGRD96 12.0 35 90 -15 4.54 0.4838 WVFGRD96 13.0 35 90 -15 4.55 0.4888 WVFGRD96 14.0 35 90 -10 4.56 0.4933 WVFGRD96 15.0 35 90 -10 4.57 0.4974 WVFGRD96 16.0 35 90 -15 4.58 0.5003 WVFGRD96 17.0 35 90 -10 4.58 0.5031 WVFGRD96 18.0 35 90 -10 4.59 0.5060 WVFGRD96 19.0 35 90 -10 4.60 0.5088 WVFGRD96 20.0 35 90 -10 4.61 0.5121 WVFGRD96 21.0 35 90 -10 4.61 0.5162 WVFGRD96 22.0 35 90 -10 4.62 0.5192 WVFGRD96 23.0 35 90 -10 4.63 0.5219 WVFGRD96 24.0 215 90 10 4.64 0.5242 WVFGRD96 25.0 35 90 -10 4.64 0.5267 WVFGRD96 26.0 40 90 10 4.64 0.5291 WVFGRD96 27.0 40 90 10 4.65 0.5327 WVFGRD96 28.0 40 90 10 4.66 0.5370 WVFGRD96 29.0 215 85 -15 4.67 0.5433 WVFGRD96 30.0 215 85 -15 4.67 0.5485 WVFGRD96 31.0 215 85 -15 4.68 0.5533 WVFGRD96 32.0 215 85 -15 4.69 0.5583 WVFGRD96 33.0 40 85 10 4.71 0.5669 WVFGRD96 34.0 40 85 10 4.72 0.5748 WVFGRD96 35.0 220 90 -10 4.73 0.5779 WVFGRD96 36.0 40 85 10 4.74 0.5916 WVFGRD96 37.0 220 90 -10 4.76 0.5931 WVFGRD96 38.0 40 85 10 4.77 0.6092 WVFGRD96 39.0 40 85 10 4.79 0.6184 WVFGRD96 40.0 40 80 20 4.82 0.6262 WVFGRD96 41.0 40 80 15 4.83 0.6302 WVFGRD96 42.0 40 80 15 4.83 0.6343 WVFGRD96 43.0 40 80 15 4.84 0.6382 WVFGRD96 44.0 40 80 15 4.85 0.6422 WVFGRD96 45.0 40 80 15 4.86 0.6460 WVFGRD96 46.0 40 80 15 4.86 0.6497 WVFGRD96 47.0 40 80 15 4.87 0.6536 WVFGRD96 48.0 40 80 15 4.88 0.6576 WVFGRD96 49.0 40 80 15 4.88 0.6618 WVFGRD96 50.0 40 80 15 4.89 0.6656 WVFGRD96 51.0 40 80 15 4.90 0.6690 WVFGRD96 52.0 40 80 15 4.90 0.6729 WVFGRD96 53.0 40 80 15 4.91 0.6771 WVFGRD96 54.0 40 80 15 4.91 0.6803 WVFGRD96 55.0 40 80 15 4.92 0.6830 WVFGRD96 56.0 40 80 15 4.93 0.6868 WVFGRD96 57.0 40 80 15 4.93 0.6900 WVFGRD96 58.0 40 80 15 4.93 0.6921 WVFGRD96 59.0 40 80 15 4.94 0.6953 WVFGRD96 60.0 40 80 20 4.94 0.6978 WVFGRD96 61.0 45 75 20 4.95 0.6994 WVFGRD96 62.0 45 75 20 4.95 0.7026 WVFGRD96 63.0 45 75 20 4.95 0.7044 WVFGRD96 64.0 45 75 20 4.96 0.7063 WVFGRD96 65.0 45 75 20 4.96 0.7085 WVFGRD96 66.0 45 75 20 4.96 0.7091 WVFGRD96 67.0 45 75 20 4.97 0.7113 WVFGRD96 68.0 45 75 20 4.97 0.7118 WVFGRD96 69.0 45 75 20 4.97 0.7131 WVFGRD96 70.0 45 75 20 4.98 0.7140 WVFGRD96 71.0 45 75 20 4.98 0.7143 WVFGRD96 72.0 45 75 20 4.98 0.7150 WVFGRD96 73.0 45 75 20 4.98 0.7145 WVFGRD96 74.0 45 75 20 4.99 0.7151 WVFGRD96 75.0 45 75 20 4.99 0.7144 WVFGRD96 76.0 45 75 20 4.99 0.7150 WVFGRD96 77.0 45 75 20 4.99 0.7138 WVFGRD96 78.0 45 75 20 5.00 0.7139 WVFGRD96 79.0 45 75 20 5.00 0.7127 WVFGRD96 80.0 45 75 20 5.00 0.7128 WVFGRD96 81.0 45 75 20 5.00 0.7111 WVFGRD96 82.0 45 75 20 5.00 0.7106 WVFGRD96 83.0 45 75 20 5.01 0.7094 WVFGRD96 84.0 45 75 20 5.01 0.7083 WVFGRD96 85.0 45 75 20 5.01 0.7067 WVFGRD96 86.0 45 75 20 5.01 0.7056 WVFGRD96 87.0 45 75 20 5.01 0.7043 WVFGRD96 88.0 45 75 20 5.01 0.7018 WVFGRD96 89.0 45 75 20 5.02 0.7012 WVFGRD96 90.0 40 80 20 5.02 0.6987 WVFGRD96 91.0 40 80 20 5.02 0.6978 WVFGRD96 92.0 40 80 20 5.02 0.6963 WVFGRD96 93.0 40 80 20 5.02 0.6944 WVFGRD96 94.0 40 80 25 5.02 0.6932 WVFGRD96 95.0 40 80 25 5.02 0.6911 WVFGRD96 96.0 40 80 25 5.02 0.6900 WVFGRD96 97.0 40 80 25 5.02 0.6883 WVFGRD96 98.0 40 80 25 5.02 0.6867 WVFGRD96 99.0 40 80 25 5.02 0.6847
The best solution is
WVFGRD96 74.0 45 75 20 4.99 0.7151
The mechanism corresponding to the best fit is
![]() |
|
The best fit as a function of depth is given in the following figure:
![]() |
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed, the velocity model used in the predictions may not be perfect and the epicentral parameters may be be off. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
hp c 0.02 n 3 lp c 0.05 n 3
![]() |
Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated. The time scale is relative to the first trace sample. |
![]() |
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to the waveforms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
The WUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows (The format is in the model96 format of Computer Programs in Seismology).
MODEL.01 Model after 8 iterations ISOTROPIC KGS FLAT EARTH 1-D CONSTANT VELOCITY LINE08 LINE09 LINE10 LINE11 H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS 1.9000 3.4065 2.0089 2.2150 0.302E-02 0.679E-02 0.00 0.00 1.00 1.00 6.1000 5.5445 3.2953 2.6089 0.349E-02 0.784E-02 0.00 0.00 1.00 1.00 13.0000 6.2708 3.7396 2.7812 0.212E-02 0.476E-02 0.00 0.00 1.00 1.00 19.0000 6.4075 3.7680 2.8223 0.111E-02 0.249E-02 0.00 0.00 1.00 1.00 0.0000 7.9000 4.6200 3.2760 0.164E-10 0.370E-10 0.00 0.00 1.00 1.00