Location

SLU Location

To check the ANSS location or to compare the observed P-wave first motions to the moment tensor solution, P- and S-wave first arrival times were manually read together with the P-wave first motions. The subsequent output of the program elocate is given in the file elocate.txt. The first motion plot is shown below.

Location ANSS

The ANSS event ID is nm608924 and the event page is at https://earthquake.usgs.gov/earthquakes/eventpage/nm608924/executive.

2011/06/07 08:10:34 38.077 -90.902 20.8 3.9 Missouri

Focal Mechanism

 USGS/SLU Moment Tensor Solution
 ENS  2011/06/07 08:10:34:0  38.08  -90.90  20.8 3.9 Missouri
 
 Stations used:
   IU.WCI IU.WVT NM.BLO NM.MGMO NM.MPH NM.OLIL NM.PBMO NM.PVMO 
   NM.SIUC NM.SLM NM.UALR NM.USIN NM.UTMT NM.X201 NM.X301 
   TA.N37A TA.N39A TA.O38A TA.O40A TA.P36A TA.P37A TA.P38A 
   TA.P40A TA.Q36A TA.Q38A TA.Q39A TA.Q40A TA.R36A TA.R37A 
   TA.R38A TA.R39A TA.S37A TA.S38A TA.S39A TA.S40A TA.SFIN 
   TA.T37A TA.T38A TA.T39A TA.T40A TA.U38A TA.U39A TA.U40A 
   TA.V37A TA.W39A TA.W40A TA.X40A US.HDIL 
 
 Filtering commands used:
   hp c 0.02 n 3
   lp c 0.10 n 3
 
 Best Fitting Double Couple
  Mo = 7.76e+21 dyne-cm
  Mw = 3.86 
  Z  = 27 km
  Plane   Strike  Dip  Rake
   NP1      100    80    25
   NP2        5    65   169
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   7.76e+21     25     325
    N   0.00e+00     63     120
    P  -7.76e+21     10     231

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx     1.28e+21
       Mxy    -6.70e+21
       Mxz     3.25e+21
       Myy    -2.40e+21
       Myz    -6.68e+20
       Mzz     1.12e+21
                                                     
                                                     
                                                     
                                                     
                     ##########----                  
                 ###############-------              
              ###   #############---------           
             #### T #############----------          
           ######   ##############-----------        
          ########################------------       
         #########################-------------      
        ##########################--------------     
        ##########################--------------     
       --#########################---------------    
       -------####################---------------    
       -------------##############---------------    
       ----------------------#####---------------    
        --------------------------##############     
        -------------------------###############     
         ------------------------##############      
          --   -----------------##############       
           - P -----------------#############        
               ----------------############          
              ----------------############           
                 ------------##########              
                     ------########                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
  1.12e+21   3.25e+21   6.68e+20 
  3.25e+21   1.28e+21   6.70e+21 
  6.68e+20   6.70e+21  -2.40e+21 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20110607081034/index.html
        

Preferred Solution

The preferred solution from an analysis of the surface-wave spectral amplitude radiation pattern, waveform inversion or first motion observations is

      STK = 100
      DIP = 80
     RAKE = 25
       MW = 3.86
       HS = 27.0

The NDK file is 20110607081034.ndk The waveform inversion is preferred.

Moment Tensor Comparison

The following compares this source inversion to those provided by others. The purpose is to look for major differences and also to note slight differences that might be inherent to the processing procedure. For completeness the USGS/SLU solution is repeated from above.
SLU
SLUFM
 USGS/SLU Moment Tensor Solution
 ENS  2011/06/07 08:10:34:0  38.08  -90.90  20.8 3.9 Missouri
 
 Stations used:
   IU.WCI IU.WVT NM.BLO NM.MGMO NM.MPH NM.OLIL NM.PBMO NM.PVMO 
   NM.SIUC NM.SLM NM.UALR NM.USIN NM.UTMT NM.X201 NM.X301 
   TA.N37A TA.N39A TA.O38A TA.O40A TA.P36A TA.P37A TA.P38A 
   TA.P40A TA.Q36A TA.Q38A TA.Q39A TA.Q40A TA.R36A TA.R37A 
   TA.R38A TA.R39A TA.S37A TA.S38A TA.S39A TA.S40A TA.SFIN 
   TA.T37A TA.T38A TA.T39A TA.T40A TA.U38A TA.U39A TA.U40A 
   TA.V37A TA.W39A TA.W40A TA.X40A US.HDIL 
 
 Filtering commands used:
   hp c 0.02 n 3
   lp c 0.10 n 3
 
 Best Fitting Double Couple
  Mo = 7.76e+21 dyne-cm
  Mw = 3.86 
  Z  = 27 km
  Plane   Strike  Dip  Rake
   NP1      100    80    25
   NP2        5    65   169
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   7.76e+21     25     325
    N   0.00e+00     63     120
    P  -7.76e+21     10     231

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx     1.28e+21
       Mxy    -6.70e+21
       Mxz     3.25e+21
       Myy    -2.40e+21
       Myz    -6.68e+20
       Mzz     1.12e+21
                                                     
                                                     
                                                     
                                                     
                     ##########----                  
                 ###############-------              
              ###   #############---------           
             #### T #############----------          
           ######   ##############-----------        
          ########################------------       
         #########################-------------      
        ##########################--------------     
        ##########################--------------     
       --#########################---------------    
       -------####################---------------    
       -------------##############---------------    
       ----------------------#####---------------    
        --------------------------##############     
        -------------------------###############     
         ------------------------##############      
          --   -----------------##############       
           - P -----------------#############        
               ----------------############          
              ----------------############           
                 ------------##########              
                     ------########                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
  1.12e+21   3.25e+21   6.68e+20 
  3.25e+21   1.28e+21   6.70e+21 
  6.68e+20   6.70e+21  -2.40e+21 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20110607081034/index.html
	


First motions and takeoff angles from an elocate run.

Magnitudes

Given the availability of digital waveforms for determination of the moment tensor, this section documents the added processing leading to mLg, if appropriate to the region, and ML by application of the respective IASPEI formulae. As a research study, the linear distance term of the IASPEI formula for ML is adjusted to remove a linear distance trend in residuals to give a regionally defined ML. The defined ML uses horizontal component recordings, but the same procedure is applied to the vertical components since there may be some interest in vertical component ground motions. Residual plots versus distance may indicate interesting features of ground motion scaling in some distance ranges. A residual plot of the regionalized magnitude is given as a function of distance and azimuth, since data sets may transcend different wave propagation provinces.

mLg Magnitude


Left: mLg computed using the IASPEI formula. Center: mLg residuals versus epicentral distance ; the values used for the trimmed mean magnitude estimate are indicated. Right: residuals as a function of distance and azimuth.

ML Magnitude


Left: ML computed using the IASPEI formula for Horizontal components. Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot. Right: Residuals from new relation as a function of distance and azimuth.


Left: ML computed using the IASPEI formula for Vertical components (research). Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot. Right: Residuals from new relation as a function of distance and azimuth.

Context

The left panel of the next figure presents the focal mechanism for this earthquake (red) in the context of other nearby events (blue) in the SLU Moment Tensor Catalog. The right panel shows the inferred direction of maximum compressive stress and the type of faulting (green is strike-slip, red is normal, blue is thrust; oblique is shown by a combination of colors). Thus context plot is useful for assessing the appropriateness of the moment tensor of this event.

Waveform Inversion using wvfgrd96

The focal mechanism was determined using broadband seismic waveforms. The location of the event (star) and the stations used for (red) the waveform inversion are shown in the next figure.
Location of broadband stations used for waveform inversion

The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green's functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.

The observed and predicted traces are filtered using the following gsac commands:

hp c 0.02 n 3
lp c 0.10 n 3
The results of this grid search are as follow:

           DEPTH  STK   DIP  RAKE   MW    FIT
WVFGRD96    0.5   100    90     5   3.40 0.3398
WVFGRD96    1.0   100    90     5   3.44 0.3718
WVFGRD96    2.0   280    90     0   3.50 0.4212
WVFGRD96    3.0   100    85     0   3.54 0.4344
WVFGRD96    4.0   100    90   -10   3.56 0.4262
WVFGRD96    5.0   280    90   -20   3.57 0.4206
WVFGRD96    6.0   100    85    20   3.59 0.4258
WVFGRD96    7.0   100    85    20   3.60 0.4324
WVFGRD96    8.0   100    80    20   3.61 0.4414
WVFGRD96    9.0   100    85    20   3.62 0.4524
WVFGRD96   10.0   100    80    20   3.65 0.4661
WVFGRD96   11.0   100    75    20   3.66 0.4794
WVFGRD96   12.0   100    75    20   3.68 0.4910
WVFGRD96   13.0   100    80    20   3.69 0.5008
WVFGRD96   14.0   100    80    20   3.70 0.5089
WVFGRD96   15.0   100    80    20   3.72 0.5153
WVFGRD96   16.0   100    80    20   3.73 0.5207
WVFGRD96   17.0   100    80    20   3.74 0.5249
WVFGRD96   18.0   100    80    20   3.75 0.5292
WVFGRD96   19.0   100    80    20   3.77 0.5332
WVFGRD96   20.0   100    80    25   3.79 0.5382
WVFGRD96   21.0   100    80    25   3.80 0.5425
WVFGRD96   22.0   100    80    25   3.81 0.5464
WVFGRD96   23.0   100    80    25   3.82 0.5500
WVFGRD96   24.0   100    80    25   3.83 0.5541
WVFGRD96   25.0   100    80    25   3.84 0.5566
WVFGRD96   26.0   100    80    25   3.85 0.5576
WVFGRD96   27.0   100    80    25   3.86 0.5579
WVFGRD96   28.0   100    80    25   3.87 0.5564
WVFGRD96   29.0   100    80    25   3.88 0.5527
WVFGRD96   30.0   100    80    30   3.89 0.5483
WVFGRD96   31.0   100    80    30   3.90 0.5428
WVFGRD96   32.0   100    80    30   3.91 0.5351
WVFGRD96   33.0   100    80    30   3.92 0.5261
WVFGRD96   34.0   100    80    30   3.93 0.5167
WVFGRD96   35.0   100    80    30   3.94 0.5066
WVFGRD96   36.0   100    80    30   3.95 0.4960
WVFGRD96   37.0   100    80    30   3.96 0.4861
WVFGRD96   38.0   100    80    30   3.97 0.4766
WVFGRD96   39.0   100    85    25   3.99 0.4680

The best solution is

WVFGRD96   27.0   100    80    25   3.86 0.5579

The mechanism corresponding to the best fit is
Figure 1. Waveform inversion focal mechanism

The best fit as a function of depth is given in the following figure:

Figure 2. Depth sensitivity for waveform mechanism

The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed, the velocity model used in the predictions may not be perfect and the epicentral parameters may be be off. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).

The bandpass filter used in the processing and for the display was

hp c 0.02 n 3
lp c 0.10 n 3
Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated. The time scale is relative to the first trace sample.

Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to the waveforms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure.

A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:

Assuming only a mislocation, the time shifts are fit to a functional form:

 Time_shift = A + B cos Azimuth + C Sin Azimuth

The time shifts for this inversion lead to the next figure:

The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.

Velocity Model

The CUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows (The format is in the model96 format of Computer Programs in Seismology).

MODEL.01
CUS Model with Q from simple gamma values
ISOTROPIC
KGS
FLAT EARTH
1-D
CONSTANT VELOCITY
LINE08
LINE09
LINE10
LINE11
  H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC)   QP   QS  ETAP  ETAS  FREFP  FREFS
  1.0000  5.0000  2.8900  2.5000 0.172E-02 0.387E-02 0.00  0.00  1.00  1.00 
  9.0000  6.1000  3.5200  2.7300 0.160E-02 0.363E-02 0.00  0.00  1.00  1.00 
 10.0000  6.4000  3.7000  2.8200 0.149E-02 0.336E-02 0.00  0.00  1.00  1.00 
 20.0000  6.7000  3.8700  2.9020 0.000E-04 0.000E-04 0.00  0.00  1.00  1.00 
  0.0000  8.1500  4.7000  3.3640 0.194E-02 0.431E-02 0.00  0.00  1.00  1.00 
Last Changed Sat Apr 27 02:12:19 PM CDT 2024