The ANSS event ID is nn00338685 and the event page is at https://earthquake.usgs.gov/earthquakes/eventpage/nn00338685/executive.
2011/05/27 19:45:48 38.437 -118.730 2.6 4.1 Nevada
USGS/SLU Moment Tensor Solution
ENS 2011/05/27 19:45:48:0 38.44 -118.73 2.6 4.1 Nevada
Stations used:
BK.CMB BK.HUMO BK.MOD BK.ORV BK.WDC BK.YBH CI.GSC CI.LDF
CI.PASC LB.DAC NC.AFD NN.PAH NN.SHP UU.KNB UU.LCMT UU.SZCU
UU.TCRU UW.TREE
Filtering commands used:
hp c 0.02 n 3
lp c 0.06 n 3
Best Fitting Double Couple
Mo = 6.31e+21 dyne-cm
Mw = 3.80
Z = 3 km
Plane Strike Dip Rake
NP1 25 45 -90
NP2 205 45 -90
Principal Axes:
Axis Value Plunge Azimuth
T 6.31e+21 -0 115
N 0.00e+00 -0 25
P -6.31e+21 90 240
Moment Tensor: (dyne-cm)
Component Value
Mxx 1.13e+21
Mxy -2.42e+21
Mxz -6.02e+13
Myy 5.18e+21
Myz -3.32e+14
Mzz -6.31e+21
##############
##############-------#
#############------------###
############---------------###
############-----------------#####
###########-------------------######
###########---------------------######
###########----------------------#######
##########-----------------------#######
##########-----------------------#########
#########--------- ------------#########
#########--------- P ------------#########
#########--------- -----------##########
#######-----------------------##########
#######----------------------########
######---------------------######### T
######-------------------##########
#####-----------------############
###---------------############
###------------#############
#-------##############
##############
Global CMT Convention Moment Tensor:
R T P
-6.31e+21 -6.02e+13 3.32e+14
-6.02e+13 1.13e+21 2.42e+21
3.32e+14 2.42e+21 5.18e+21
Details of the solution is found at
http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20110527194548/index.html
|
STK = 205
DIP = 45
RAKE = -90
MW = 3.80
HS = 3.0
The NDK file is 20110527194548.ndk The waveform inversion is preferred.
The following compares this source inversion to those provided by others. The purpose is to look for major differences and also to note slight differences that might be inherent to the processing procedure. For completeness the USGS/SLU solution is repeated from above.
USGS/SLU Moment Tensor Solution
ENS 2011/05/27 19:45:48:0 38.44 -118.73 2.6 4.1 Nevada
Stations used:
BK.CMB BK.HUMO BK.MOD BK.ORV BK.WDC BK.YBH CI.GSC CI.LDF
CI.PASC LB.DAC NC.AFD NN.PAH NN.SHP UU.KNB UU.LCMT UU.SZCU
UU.TCRU UW.TREE
Filtering commands used:
hp c 0.02 n 3
lp c 0.06 n 3
Best Fitting Double Couple
Mo = 6.31e+21 dyne-cm
Mw = 3.80
Z = 3 km
Plane Strike Dip Rake
NP1 25 45 -90
NP2 205 45 -90
Principal Axes:
Axis Value Plunge Azimuth
T 6.31e+21 -0 115
N 0.00e+00 -0 25
P -6.31e+21 90 240
Moment Tensor: (dyne-cm)
Component Value
Mxx 1.13e+21
Mxy -2.42e+21
Mxz -6.02e+13
Myy 5.18e+21
Myz -3.32e+14
Mzz -6.31e+21
##############
##############-------#
#############------------###
############---------------###
############-----------------#####
###########-------------------######
###########---------------------######
###########----------------------#######
##########-----------------------#######
##########-----------------------#########
#########--------- ------------#########
#########--------- P ------------#########
#########--------- -----------##########
#######-----------------------##########
#######----------------------########
######---------------------######### T
######-------------------##########
#####-----------------############
###---------------############
###------------#############
#-------##############
##############
Global CMT Convention Moment Tensor:
R T P
-6.31e+21 -6.02e+13 3.32e+14
-6.02e+13 1.13e+21 2.42e+21
3.32e+14 2.42e+21 5.18e+21
Details of the solution is found at
http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20110527194548/index.html
|
REVIEWED BY NSL STAFF
Event ID:338685
Origin ID:799891
Algorithm: Ichinose (2003) Long Period, Regional-Distance Waves
Seismic Moment Tensor Solution
2011/05/27 (147) 19:45:48.00 38.4379 -118.6947 799876
Depth = 6.0 (km)
Mw = 3.95
Mo = 1.05x10^22 (dyne x cm)
Percent Double Couple = 99 %
Percent CLVD = 1 %
no ISO calculated
Epsilon=0.00
Percent Variance Reduction = 39.79 %
Total Fit = 25.54
Major Double Couple
strike dip rake
Nodal Plane 1: 214 38 -105
Nodal Plane 2: 54 53 -78
DEVIATORIC MOMENT TENSOR
Moment Tensor Elements: Spherical Coordinates
Mrr= -0.98 Mtt= 0.47 Mff= 0.51
Mrt= -0.31 Mrf= -0.07 Mtf= 0.52 EXP=22
Moment Tensor Elements: Cartesian Coordinates
0.47 -0.52 -0.31
-0.52 0.51 0.07
-0.31 0.07 -0.98
Eigenvalues:
T-axis eigenvalue= 1.04
N-axis eigenvalue= 0.00
P-axis eigenvalue= -1.05
Eigenvalues and eigenvectors of the Major Double Couple:
T-axis ev= 1.04 trend=135 plunge=8
N-axis ev= 0.00 trend=226 plunge=9
P-axis ev=-1.04 trend=7 plunge=78
Maximum Azmuithal Gap=150 Distance to Nearest Station= 90.7 (km)
Number of Stations (D=Displacement/V=Velocity) Used=9 (defining only)
MLAC.CI.D PAH.NN.D CMB.BK.D TIN.CI.D
GRA.CI.D CWC.CI.D DAC.LB.D TPNV.US.D
FUR.CI.D
##################
#########################
###################-------#--
################-----------------
##############---------------------#
############------------------------##
-############------------------------####
###########--------------------------####
###########-------- ---------------######
##########--------- P ---------------######
#########---------- --------------########
########---------------------------#########
########-------------------------###########
#######-------------------------############
#######-----------------------#############
#######---------------------###############
######------------------#################
#####---------------####################
#####-----------#######################
############################## ###
--########################### T #
-##########################
#########################
##################
#
All Stations defining and nondefining:
Station.Net Def Distance Azi Bazi lo-f hi-f vmodel
(km) (deg) (deg) (Hz) (Hz)
MLAC.CI (D) Y 90.7 188 8 0.020 0.080 MLAC.CI.wus.glib
PAH.NN (D) Y 153.5 337 157 0.020 0.080 PAH.NN.wus.glib
CMB.BK (D) Y 154.7 253 72 0.020 0.080 CMB.BK.wus.glib
TIN.CI (D) Y 159.5 165 345 0.020 0.080 TIN.CI.wus.glib
GRA.CI (D) Y 197.7 144 324 0.020 0.080 GRA.CI.wus.glib
CWC.CI (D) Y 228.5 166 346 0.020 0.080 CWC.CI.wus.glib
DAC.LB (D) Y 258.8 158 338 0.020 0.080 DAC.LB.wus.glib
TPNV.US (D) Y 271.1 127 308 0.020 0.080 TPNV.US.wus.glib
FUR.CI (D) Y 272.0 143 324 0.020 0.080 FUR.CI.wus.glib
(V)-velocity (D)-Displacement
Author: www-data
Date: 2011/05/27 20:21:40
mtinv Version 2.1_DEVEL OCT2008
|
|
Given the availability of digital waveforms for determination of the moment tensor, this section documents the added processing leading to mLg, if appropriate to the region, and ML by application of the respective IASPEI formulae. As a research study, the linear distance term of the IASPEI formula for ML is adjusted to remove a linear distance trend in residuals to give a regionally defined ML. The defined ML uses horizontal component recordings, but the same procedure is applied to the vertical components since there may be some interest in vertical component ground motions. Residual plots versus distance may indicate interesting features of ground motion scaling in some distance ranges. A residual plot of the regionalized magnitude is given as a function of distance and azimuth, since data sets may transcend different wave propagation provinces.
Left: ML computed using the IASPEI formula for Horizontal components. Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
Left: ML computed using the IASPEI formula for Vertical components (research). Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
![]() |
The focal mechanism was determined using broadband seismic waveforms. The location of the event (star) and the stations used for (red) the waveform inversion are shown in the next figure.
|
|
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green's functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
hp c 0.02 n 3 lp c 0.06 n 3The results of this grid search are as follow:
DEPTH STK DIP RAKE MW FIT
WVFGRD96 0.5 230 50 -55 3.58 0.4330
WVFGRD96 1.0 215 45 -75 3.64 0.4682
WVFGRD96 2.0 225 45 -60 3.72 0.5678
WVFGRD96 3.0 205 45 -90 3.80 0.6066
WVFGRD96 4.0 220 45 -70 3.82 0.5774
WVFGRD96 5.0 235 55 -45 3.78 0.5404
WVFGRD96 6.0 60 85 -35 3.76 0.5356
WVFGRD96 7.0 245 85 35 3.77 0.5411
WVFGRD96 8.0 245 90 40 3.81 0.5442
WVFGRD96 9.0 75 70 35 3.82 0.5497
WVFGRD96 10.0 80 65 35 3.84 0.5598
WVFGRD96 11.0 80 60 35 3.86 0.5674
WVFGRD96 12.0 80 60 35 3.87 0.5723
WVFGRD96 13.0 80 60 35 3.88 0.5742
WVFGRD96 14.0 80 60 35 3.89 0.5738
WVFGRD96 15.0 80 60 35 3.89 0.5713
WVFGRD96 16.0 80 60 35 3.90 0.5667
WVFGRD96 17.0 80 60 35 3.91 0.5615
WVFGRD96 18.0 80 60 35 3.92 0.5550
WVFGRD96 19.0 80 60 40 3.93 0.5471
WVFGRD96 20.0 80 55 35 3.94 0.5389
WVFGRD96 21.0 80 55 35 3.95 0.5278
WVFGRD96 22.0 80 55 35 3.95 0.5186
WVFGRD96 23.0 80 55 40 3.96 0.5094
WVFGRD96 24.0 85 50 35 3.97 0.5001
WVFGRD96 25.0 85 50 35 3.97 0.4905
WVFGRD96 26.0 85 50 35 3.98 0.4816
WVFGRD96 27.0 70 40 -25 3.97 0.4737
WVFGRD96 28.0 70 40 -25 3.98 0.4680
WVFGRD96 29.0 70 40 -25 3.98 0.4626
The best solution is
WVFGRD96 3.0 205 45 -90 3.80 0.6066
The mechanism corresponding to the best fit is
|
|
|
The best fit as a function of depth is given in the following figure:
|
|
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed, the velocity model used in the predictions may not be perfect and the epicentral parameters may be be off. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
hp c 0.02 n 3 lp c 0.06 n 3
|
| Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated. The time scale is relative to the first trace sample. |
|
| Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to the waveforms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
The WUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows (The format is in the model96 format of Computer Programs in Seismology).
MODEL.01
Model after 8 iterations
ISOTROPIC
KGS
FLAT EARTH
1-D
CONSTANT VELOCITY
LINE08
LINE09
LINE10
LINE11
H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS
1.9000 3.4065 2.0089 2.2150 0.302E-02 0.679E-02 0.00 0.00 1.00 1.00
6.1000 5.5445 3.2953 2.6089 0.349E-02 0.784E-02 0.00 0.00 1.00 1.00
13.0000 6.2708 3.7396 2.7812 0.212E-02 0.476E-02 0.00 0.00 1.00 1.00
19.0000 6.4075 3.7680 2.8223 0.111E-02 0.249E-02 0.00 0.00 1.00 1.00
0.0000 7.9000 4.6200 3.2760 0.164E-10 0.370E-10 0.00 0.00 1.00 1.00