The ANSS event ID is nn00336893 and the event page is at https://earthquake.usgs.gov/earthquakes/eventpage/nn00336893/executive.
2011/05/12 16:23:49 38.412 -118.739 3.6 4.3 Nevada
USGS/SLU Moment Tensor Solution
ENS 2011/05/12 16:23:49:0 38.41 -118.74 3.6 4.3 Nevada
Stations used:
BK.CMB BK.HUMO BK.JCC BK.MOD BK.ORV BK.WDC BK.YBH CI.GSC
CI.ISA CI.LDF CI.MWC CI.OSI CI.PASC UU.BGU UU.KNB UU.LCMT
UU.PSUT UU.SZCU UU.TCRU UW.TREE
Filtering commands used:
cut o DIST/3.3 -30 o DIST/3.3 +60
rtr
taper w 0.1
hp c 0.025 n 3
lp c 0.06 n 3
Best Fitting Double Couple
Mo = 1.06e+22 dyne-cm
Mw = 3.95
Z = 16 km
Plane Strike Dip Rake
NP1 70 70 25
NP2 331 67 158
Principal Axes:
Axis Value Plunge Azimuth
T 1.06e+22 32 291
N 0.00e+00 58 106
P -1.06e+22 2 200
Moment Tensor: (dyne-cm)
Component Value
Mxx -8.34e+21
Mxy -5.99e+21
Mxz 2.10e+21
Myy 5.46e+21
Myz -4.26e+21
Mzz 2.88e+21
--------------
##--------------------
########--------------------
############------------------
################------------------
##################------------------
#####################-----------------
##### ###############----------------#
##### T ################-------------###
###### #################----------######
###########################-------########
############################---###########
############################-#############
######################-------###########
################-------------###########
-----------------------------#########
----------------------------########
---------------------------#######
-------------------------#####
------------------------####
--- ---------------#
P ------------
Global CMT Convention Moment Tensor:
R T P
2.88e+21 2.10e+21 4.26e+21
2.10e+21 -8.34e+21 5.99e+21
4.26e+21 5.99e+21 5.46e+21
Details of the solution is found at
http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20110512162349/index.html
|
STK = 70
DIP = 70
RAKE = 25
MW = 3.95
HS = 16.0
The NDK file is 20110512162349.ndk The waveform inversion is preferred.
The following compares this source inversion to those provided by others. The purpose is to look for major differences and also to note slight differences that might be inherent to the processing procedure. For completeness the USGS/SLU solution is repeated from above.
USGS/SLU Moment Tensor Solution
ENS 2011/05/12 16:23:49:0 38.41 -118.74 3.6 4.3 Nevada
Stations used:
BK.CMB BK.HUMO BK.JCC BK.MOD BK.ORV BK.WDC BK.YBH CI.GSC
CI.ISA CI.LDF CI.MWC CI.OSI CI.PASC UU.BGU UU.KNB UU.LCMT
UU.PSUT UU.SZCU UU.TCRU UW.TREE
Filtering commands used:
cut o DIST/3.3 -30 o DIST/3.3 +60
rtr
taper w 0.1
hp c 0.025 n 3
lp c 0.06 n 3
Best Fitting Double Couple
Mo = 1.06e+22 dyne-cm
Mw = 3.95
Z = 16 km
Plane Strike Dip Rake
NP1 70 70 25
NP2 331 67 158
Principal Axes:
Axis Value Plunge Azimuth
T 1.06e+22 32 291
N 0.00e+00 58 106
P -1.06e+22 2 200
Moment Tensor: (dyne-cm)
Component Value
Mxx -8.34e+21
Mxy -5.99e+21
Mxz 2.10e+21
Myy 5.46e+21
Myz -4.26e+21
Mzz 2.88e+21
--------------
##--------------------
########--------------------
############------------------
################------------------
##################------------------
#####################-----------------
##### ###############----------------#
##### T ################-------------###
###### #################----------######
###########################-------########
############################---###########
############################-#############
######################-------###########
################-------------###########
-----------------------------#########
----------------------------########
---------------------------#######
-------------------------#####
------------------------####
--- ---------------#
P ------------
Global CMT Convention Moment Tensor:
R T P
2.88e+21 2.10e+21 4.26e+21
2.10e+21 -8.34e+21 5.99e+21
4.26e+21 5.99e+21 5.46e+21
Details of the solution is found at
http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20110512162349/index.html
|
REVIEWED BY NSL STAFF
Event ID:336893
Origin ID:795904
Algorithm: Ichinose (2003) Long Period, Regional-Distance Waves
Seismic Moment Tensor Solution
2011/05/12 (132) 16:23:50.00 38.4176 -118.7369 795904
Depth = 4.0 (km)
Mw = 4.03
Mo = 1.38x10^22 (dyne x cm)
Percent Double Couple = 98 %
Percent CLVD = 2 %
no ISO calculated
Epsilon=0.01
Percent Variance Reduction = 70.50 %
Total Fit = 27.64
Major Double Couple
strike dip rake
Nodal Plane 1: 224 43 -77
Nodal Plane 2: 27 49 -102
DEVIATORIC MOMENT TENSOR
Moment Tensor Elements: Spherical Coordinates
Mrr= -1.35 Mtt= 0.44 Mff= 0.90
Mrt= 0.09 Mrf= -0.24 Mtf= 0.66 EXP=22
Moment Tensor Elements: Cartesian Coordinates
0.44 -0.66 0.09
-0.66 0.90 0.24
0.09 0.24 -1.35
Eigenvalues:
T-axis eigenvalue= 1.37
N-axis eigenvalue= 0.01
P-axis eigenvalue= -1.39
Eigenvalues and eigenvectors of the Major Double Couple:
T-axis ev= 1.37 trend=125 plunge=3
N-axis ev= 0.00 trend=34 plunge=9
P-axis ev=-1.37 trend=234 plunge=81
Maximum Azmuithal Gap=147 Distance to Nearest Station= 88.0 (km)
Number of Stations (D=Displacement/V=Velocity) Used=10 (defining only)
MLAC.CI.D CMB.BK.D PAH.NN.D TIN.CI.D
GRA.CI.D DAC.LB.D FUR.CI.D TPNV.US.D
PACP.BK.D BDM.BK.D
##################
########################-
###########################--
#####################-------#####
#################------------#######
###############----------------#######
-#############-------------------########
############---------------------########
############----------------------#########
###########-----------------------#########
#########------------------------###########
########-------------------------###########
########-------- -------------############
#######--------- P ------------#############
######---------- ------------############
######------------------------#############
#####----------------------##############
####---------------------######## ####
####-------------------########## T ###
##-----------------############ ##
##--------------#################
----------###################
---######################
##################
#
All Stations defining and nondefining:
Station.Net Def Distance Azi Bazi lo-f hi-f vmodel
(km) (deg) (deg) (Hz) (Hz)
MLAC.CI (D) Y 88.0 186 6 0.020 0.080 MLAC.CI.wus.glib
CMB.BK (D) Y 150.6 254 73 0.020 0.080 CMB.BK.wus.glib
PAH.NN (D) Y 154.3 339 158 0.020 0.080 PAH.NN.wus.glib
TIN.CI (D) Y 158.3 164 344 0.020 0.080 TIN.CI.wus.glib
GRA.CI (D) Y 198.1 142 323 0.020 0.080 GRA.CI.wus.glib
DAC.LB (D) Y 258.2 157 337 0.020 0.080 DAC.LB.wus.glib
FUR.CI (D) Y 272.5 142 323 0.020 0.080 FUR.CI.wus.glib
TPNV.US (D) Y 272.8 126 307 0.020 0.080 TPNV.US.wus.glib
PACP.BK (D) Y 273.5 236 54 0.020 0.080 PACP.BK.wus.glib
BDM.BK (D) Y 278.5 260 78 0.020 0.080 BDM.BK.wus.glib
(V)-velocity (D)-Displacement
Author: www-data
Date: 2011/05/12 17:03:16
mtinv Version 2.1_DEVEL OCT2008
|
|
Given the availability of digital waveforms for determination of the moment tensor, this section documents the added processing leading to mLg, if appropriate to the region, and ML by application of the respective IASPEI formulae. As a research study, the linear distance term of the IASPEI formula for ML is adjusted to remove a linear distance trend in residuals to give a regionally defined ML. The defined ML uses horizontal component recordings, but the same procedure is applied to the vertical components since there may be some interest in vertical component ground motions. Residual plots versus distance may indicate interesting features of ground motion scaling in some distance ranges. A residual plot of the regionalized magnitude is given as a function of distance and azimuth, since data sets may transcend different wave propagation provinces.
Left: ML computed using the IASPEI formula for Horizontal components. Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
Left: ML computed using the IASPEI formula for Vertical components (research). Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
![]() |
The focal mechanism was determined using broadband seismic waveforms. The location of the event (star) and the stations used for (red) the waveform inversion are shown in the next figure.
|
|
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green's functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
cut o DIST/3.3 -30 o DIST/3.3 +60 rtr taper w 0.1 hp c 0.025 n 3 lp c 0.06 n 3The results of this grid search are as follow:
DEPTH STK DIP RAKE MW FIT
WVFGRD96 0.5 240 45 -40 3.65 0.4225
WVFGRD96 1.0 235 50 -55 3.69 0.4548
WVFGRD96 2.0 235 50 -50 3.77 0.5470
WVFGRD96 3.0 220 50 -70 3.84 0.5910
WVFGRD96 4.0 220 50 -70 3.87 0.5778
WVFGRD96 5.0 55 70 -45 3.83 0.5586
WVFGRD96 6.0 265 65 30 3.81 0.5591
WVFGRD96 7.0 260 70 30 3.83 0.5726
WVFGRD96 8.0 260 70 35 3.87 0.5800
WVFGRD96 9.0 260 70 35 3.88 0.5864
WVFGRD96 10.0 75 65 30 3.89 0.5996
WVFGRD96 11.0 75 65 30 3.90 0.6086
WVFGRD96 12.0 75 65 30 3.91 0.6163
WVFGRD96 13.0 75 65 30 3.92 0.6213
WVFGRD96 14.0 75 65 30 3.93 0.6248
WVFGRD96 15.0 75 65 30 3.94 0.6258
WVFGRD96 16.0 70 70 25 3.95 0.6259
WVFGRD96 17.0 70 70 25 3.96 0.6249
WVFGRD96 18.0 70 70 25 3.97 0.6224
WVFGRD96 19.0 70 70 25 3.98 0.6186
WVFGRD96 20.0 70 70 25 3.98 0.6144
WVFGRD96 21.0 75 70 30 3.99 0.6071
WVFGRD96 22.0 75 70 30 4.00 0.6014
WVFGRD96 23.0 75 70 30 4.01 0.5949
WVFGRD96 24.0 75 70 30 4.01 0.5882
WVFGRD96 25.0 75 70 30 4.02 0.5805
WVFGRD96 26.0 75 70 30 4.03 0.5731
WVFGRD96 27.0 75 70 30 4.03 0.5648
WVFGRD96 28.0 75 70 30 4.04 0.5568
WVFGRD96 29.0 75 70 30 4.05 0.5486
The best solution is
WVFGRD96 16.0 70 70 25 3.95 0.6259
The mechanism corresponding to the best fit is
|
|
|
The best fit as a function of depth is given in the following figure:
|
|
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed, the velocity model used in the predictions may not be perfect and the epicentral parameters may be be off. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
cut o DIST/3.3 -30 o DIST/3.3 +60 rtr taper w 0.1 hp c 0.025 n 3 lp c 0.06 n 3
|
| Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated. The time scale is relative to the first trace sample. |
|
| Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to the waveforms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
The WUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows (The format is in the model96 format of Computer Programs in Seismology).
MODEL.01
Model after 8 iterations
ISOTROPIC
KGS
FLAT EARTH
1-D
CONSTANT VELOCITY
LINE08
LINE09
LINE10
LINE11
H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS
1.9000 3.4065 2.0089 2.2150 0.302E-02 0.679E-02 0.00 0.00 1.00 1.00
6.1000 5.5445 3.2953 2.6089 0.349E-02 0.784E-02 0.00 0.00 1.00 1.00
13.0000 6.2708 3.7396 2.7812 0.212E-02 0.476E-02 0.00 0.00 1.00 1.00
19.0000 6.4075 3.7680 2.8223 0.111E-02 0.249E-02 0.00 0.00 1.00 1.00
0.0000 7.9000 4.6200 3.2760 0.164E-10 0.370E-10 0.00 0.00 1.00 1.00