Location

Location ANSS

The ANSS event ID is nn00336893 and the event page is at https://earthquake.usgs.gov/earthquakes/eventpage/nn00336893/executive.

2011/05/12 16:23:49 38.412 -118.739 3.6 4.3 Nevada

Focal Mechanism

 USGS/SLU Moment Tensor Solution
 ENS  2011/05/12 16:23:49:0  38.41 -118.74   3.6 4.3 Nevada
 
 Stations used:
   BK.CMB BK.HUMO BK.JCC BK.MOD BK.ORV BK.WDC BK.YBH CI.GSC 
   CI.ISA CI.LDF CI.MWC CI.OSI CI.PASC UU.BGU UU.KNB UU.LCMT 
   UU.PSUT UU.SZCU UU.TCRU UW.TREE 
 
 Filtering commands used:
   cut o DIST/3.3 -30 o DIST/3.3 +60
   rtr
   taper w 0.1
   hp c 0.025 n 3 
   lp c 0.06 n 3 
 
 Best Fitting Double Couple
  Mo = 1.06e+22 dyne-cm
  Mw = 3.95 
  Z  = 16 km
  Plane   Strike  Dip  Rake
   NP1       70    70    25
   NP2      331    67   158
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   1.06e+22     32     291
    N   0.00e+00     58     106
    P  -1.06e+22      2     200

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx    -8.34e+21
       Mxy    -5.99e+21
       Mxz     2.10e+21
       Myy     5.46e+21
       Myz    -4.26e+21
       Mzz     2.88e+21
                                                     
                                                     
                                                     
                                                     
                     --------------                  
                 ##--------------------              
              ########--------------------           
             ############------------------          
           ################------------------        
          ##################------------------       
         #####################-----------------      
        #####   ###############----------------#     
        ##### T ################-------------###     
       ######   #################----------######    
       ###########################-------########    
       ############################---###########    
       ############################-#############    
        ######################-------###########     
        ################-------------###########     
         -----------------------------#########      
          ----------------------------########       
           ---------------------------#######        
             -------------------------#####          
              ------------------------####           
                 ---   ---------------#              
                     P ------------                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
  2.88e+21   2.10e+21   4.26e+21 
  2.10e+21  -8.34e+21   5.99e+21 
  4.26e+21   5.99e+21   5.46e+21 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20110512162349/index.html
        

Preferred Solution

The preferred solution from an analysis of the surface-wave spectral amplitude radiation pattern, waveform inversion or first motion observations is

      STK = 70
      DIP = 70
     RAKE = 25
       MW = 3.95
       HS = 16.0

The NDK file is 20110512162349.ndk The waveform inversion is preferred.

Moment Tensor Comparison

The following compares this source inversion to those provided by others. The purpose is to look for major differences and also to note slight differences that might be inherent to the processing procedure. For completeness the USGS/SLU solution is repeated from above.
SLU
UNR
 USGS/SLU Moment Tensor Solution
 ENS  2011/05/12 16:23:49:0  38.41 -118.74   3.6 4.3 Nevada
 
 Stations used:
   BK.CMB BK.HUMO BK.JCC BK.MOD BK.ORV BK.WDC BK.YBH CI.GSC 
   CI.ISA CI.LDF CI.MWC CI.OSI CI.PASC UU.BGU UU.KNB UU.LCMT 
   UU.PSUT UU.SZCU UU.TCRU UW.TREE 
 
 Filtering commands used:
   cut o DIST/3.3 -30 o DIST/3.3 +60
   rtr
   taper w 0.1
   hp c 0.025 n 3 
   lp c 0.06 n 3 
 
 Best Fitting Double Couple
  Mo = 1.06e+22 dyne-cm
  Mw = 3.95 
  Z  = 16 km
  Plane   Strike  Dip  Rake
   NP1       70    70    25
   NP2      331    67   158
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   1.06e+22     32     291
    N   0.00e+00     58     106
    P  -1.06e+22      2     200

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx    -8.34e+21
       Mxy    -5.99e+21
       Mxz     2.10e+21
       Myy     5.46e+21
       Myz    -4.26e+21
       Mzz     2.88e+21
                                                     
                                                     
                                                     
                                                     
                     --------------                  
                 ##--------------------              
              ########--------------------           
             ############------------------          
           ################------------------        
          ##################------------------       
         #####################-----------------      
        #####   ###############----------------#     
        ##### T ################-------------###     
       ######   #################----------######    
       ###########################-------########    
       ############################---###########    
       ############################-#############    
        ######################-------###########     
        ################-------------###########     
         -----------------------------#########      
          ----------------------------########       
           ---------------------------#######        
             -------------------------#####          
              ------------------------####           
                 ---   ---------------#              
                     P ------------                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
  2.88e+21   2.10e+21   4.26e+21 
  2.10e+21  -8.34e+21   5.99e+21 
  4.26e+21   5.99e+21   5.46e+21 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20110512162349/index.html
	
REVIEWED BY NSL STAFF

Event ID:336893
Origin ID:795904
Algorithm: Ichinose (2003) Long Period, Regional-Distance Waves
Seismic Moment Tensor Solution

2011/05/12 (132) 16:23:50.00 38.4176 -118.7369 795904
	Depth =   4.0 (km)
	Mw    =  4.03
	Mo    =  1.38x10^22 (dyne x cm)

	Percent Double Couple =  98 %
	Percent CLVD          =   2 %
	no ISO calculated
	Epsilon=0.01
	 Percent Variance Reduction =  70.50 %
	 Total Fit                  =  27.64 
	Major Double Couple
		            strike dip   rake
		Nodal Plane 1: 224  43  -77
		Nodal Plane 2:  27  49 -102

	DEVIATORIC MOMENT TENSOR

	Moment Tensor Elements: Spherical Coordinates
		Mrr= -1.35 Mtt=  0.44 Mff=  0.90
		Mrt=  0.09 Mrf= -0.24 Mtf=  0.66 EXP=22


	Moment Tensor Elements: Cartesian Coordinates
		 0.44 -0.66  0.09
		-0.66  0.90  0.24
		 0.09  0.24 -1.35

	Eigenvalues:
		T-axis eigenvalue=  1.37
		N-axis eigenvalue=  0.01
		P-axis eigenvalue= -1.39

	Eigenvalues and eigenvectors of the Major Double Couple:
		T-axis ev= 1.37 trend=125 plunge=3
		N-axis ev= 0.00 trend=34 plunge=9
		P-axis ev=-1.37 trend=234 plunge=81

	Maximum Azmuithal Gap=147 Distance to Nearest Station= 88.0 (km)

	Number of Stations (D=Displacement/V=Velocity) Used=10 (defining only)
		
	 MLAC.CI.D CMB.BK.D PAH.NN.D TIN.CI.D
	 GRA.CI.D DAC.LB.D FUR.CI.D TPNV.US.D
	 PACP.BK.D BDM.BK.D


              ##################                            
          ########################-                         
        ###########################--                       
      #####################-------#####                     
     #################------------#######                   
    ###############----------------#######                  
  -#############-------------------########                 
  ############---------------------########                 
 ############----------------------#########                
 ###########-----------------------#########                
 #########------------------------###########               
 ########-------------------------###########               
 ########--------   -------------############               
 #######--------- P ------------#############               
 ######----------   ------------############                
 ######------------------------#############                
  #####----------------------##############                 
   ####---------------------########   ####                 
   ####-------------------########## T ###                  
     ##-----------------############   ##                   
      ##--------------#################                     
        ----------###################                       
          ---######################                         
              ##################                            
                      #                                     


All Stations defining and nondefining: 
Station.Net 	Def 	Distance 	Azi    	Bazi  	lo-f 	hi-f vmodel
            	    	(km)     	(deg)  	(deg) 	(Hz) 	(Hz)    
MLAC.CI (D) 	Y 	    88.0  	186  	  6  	0.020 	0.080 MLAC.CI.wus.glib
CMB.BK (D) 	Y 	   150.6  	254  	 73  	0.020 	0.080 CMB.BK.wus.glib
PAH.NN (D) 	Y 	   154.3  	339  	158  	0.020 	0.080 PAH.NN.wus.glib
TIN.CI (D) 	Y 	   158.3  	164  	344  	0.020 	0.080 TIN.CI.wus.glib
GRA.CI (D) 	Y 	   198.1  	142  	323  	0.020 	0.080 GRA.CI.wus.glib
DAC.LB (D) 	Y 	   258.2  	157  	337  	0.020 	0.080 DAC.LB.wus.glib
FUR.CI (D) 	Y 	   272.5  	142  	323  	0.020 	0.080 FUR.CI.wus.glib
TPNV.US (D) 	Y 	   272.8  	126  	307  	0.020 	0.080 TPNV.US.wus.glib
PACP.BK (D) 	Y 	   273.5  	236  	 54  	0.020 	0.080 PACP.BK.wus.glib
BDM.BK (D) 	Y 	   278.5  	260  	 78  	0.020 	0.080 BDM.BK.wus.glib

 (V)-velocity (D)-Displacement

Author: www-data
Date: 2011/05/12 17:03:16

mtinv Version 2.1_DEVEL OCT2008
        

Magnitudes

Given the availability of digital waveforms for determination of the moment tensor, this section documents the added processing leading to mLg, if appropriate to the region, and ML by application of the respective IASPEI formulae. As a research study, the linear distance term of the IASPEI formula for ML is adjusted to remove a linear distance trend in residuals to give a regionally defined ML. The defined ML uses horizontal component recordings, but the same procedure is applied to the vertical components since there may be some interest in vertical component ground motions. Residual plots versus distance may indicate interesting features of ground motion scaling in some distance ranges. A residual plot of the regionalized magnitude is given as a function of distance and azimuth, since data sets may transcend different wave propagation provinces.

ML Magnitude


Left: ML computed using the IASPEI formula for Horizontal components. Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot. Right: Residuals from new relation as a function of distance and azimuth.


Left: ML computed using the IASPEI formula for Vertical components (research). Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot. Right: Residuals from new relation as a function of distance and azimuth.

Context

The left panel of the next figure presents the focal mechanism for this earthquake (red) in the context of other nearby events (blue) in the SLU Moment Tensor Catalog. The right panel shows the inferred direction of maximum compressive stress and the type of faulting (green is strike-slip, red is normal, blue is thrust; oblique is shown by a combination of colors). Thus context plot is useful for assessing the appropriateness of the moment tensor of this event.

Waveform Inversion using wvfgrd96

The focal mechanism was determined using broadband seismic waveforms. The location of the event (star) and the stations used for (red) the waveform inversion are shown in the next figure.
Location of broadband stations used for waveform inversion

The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green's functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.

The observed and predicted traces are filtered using the following gsac commands:

cut o DIST/3.3 -30 o DIST/3.3 +60
rtr
taper w 0.1
hp c 0.025 n 3 
lp c 0.06 n 3 
The results of this grid search are as follow:

           DEPTH  STK   DIP  RAKE   MW    FIT
WVFGRD96    0.5   240    45   -40   3.65 0.4225
WVFGRD96    1.0   235    50   -55   3.69 0.4548
WVFGRD96    2.0   235    50   -50   3.77 0.5470
WVFGRD96    3.0   220    50   -70   3.84 0.5910
WVFGRD96    4.0   220    50   -70   3.87 0.5778
WVFGRD96    5.0    55    70   -45   3.83 0.5586
WVFGRD96    6.0   265    65    30   3.81 0.5591
WVFGRD96    7.0   260    70    30   3.83 0.5726
WVFGRD96    8.0   260    70    35   3.87 0.5800
WVFGRD96    9.0   260    70    35   3.88 0.5864
WVFGRD96   10.0    75    65    30   3.89 0.5996
WVFGRD96   11.0    75    65    30   3.90 0.6086
WVFGRD96   12.0    75    65    30   3.91 0.6163
WVFGRD96   13.0    75    65    30   3.92 0.6213
WVFGRD96   14.0    75    65    30   3.93 0.6248
WVFGRD96   15.0    75    65    30   3.94 0.6258
WVFGRD96   16.0    70    70    25   3.95 0.6259
WVFGRD96   17.0    70    70    25   3.96 0.6249
WVFGRD96   18.0    70    70    25   3.97 0.6224
WVFGRD96   19.0    70    70    25   3.98 0.6186
WVFGRD96   20.0    70    70    25   3.98 0.6144
WVFGRD96   21.0    75    70    30   3.99 0.6071
WVFGRD96   22.0    75    70    30   4.00 0.6014
WVFGRD96   23.0    75    70    30   4.01 0.5949
WVFGRD96   24.0    75    70    30   4.01 0.5882
WVFGRD96   25.0    75    70    30   4.02 0.5805
WVFGRD96   26.0    75    70    30   4.03 0.5731
WVFGRD96   27.0    75    70    30   4.03 0.5648
WVFGRD96   28.0    75    70    30   4.04 0.5568
WVFGRD96   29.0    75    70    30   4.05 0.5486

The best solution is

WVFGRD96   16.0    70    70    25   3.95 0.6259

The mechanism corresponding to the best fit is
Figure 1. Waveform inversion focal mechanism

The best fit as a function of depth is given in the following figure:

Figure 2. Depth sensitivity for waveform mechanism

The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed, the velocity model used in the predictions may not be perfect and the epicentral parameters may be be off. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).

The bandpass filter used in the processing and for the display was

cut o DIST/3.3 -30 o DIST/3.3 +60
rtr
taper w 0.1
hp c 0.025 n 3 
lp c 0.06 n 3 
Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated. The time scale is relative to the first trace sample.

Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to the waveforms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure.

A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:

Assuming only a mislocation, the time shifts are fit to a functional form:

 Time_shift = A + B cos Azimuth + C Sin Azimuth

The time shifts for this inversion lead to the next figure:

The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.

Velocity Model

The WUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows (The format is in the model96 format of Computer Programs in Seismology).

MODEL.01
Model after     8 iterations
ISOTROPIC
KGS
FLAT EARTH
1-D
CONSTANT VELOCITY
LINE08
LINE09
LINE10
LINE11
      H(KM)   VP(KM/S)   VS(KM/S) RHO(GM/CC)         QP         QS       ETAP       ETAS      FREFP      FREFS
     1.9000     3.4065     2.0089     2.2150  0.302E-02  0.679E-02   0.00       0.00       1.00       1.00    
     6.1000     5.5445     3.2953     2.6089  0.349E-02  0.784E-02   0.00       0.00       1.00       1.00    
    13.0000     6.2708     3.7396     2.7812  0.212E-02  0.476E-02   0.00       0.00       1.00       1.00    
    19.0000     6.4075     3.7680     2.8223  0.111E-02  0.249E-02   0.00       0.00       1.00       1.00    
     0.0000     7.9000     4.6200     3.2760  0.164E-10  0.370E-10   0.00       0.00       1.00       1.00    
Last Changed Sat Apr 27 01:57:40 PM CDT 2024