The ANSS event ID is ak0115aiaea0 and the event page is at https://earthquake.usgs.gov/earthquakes/eventpage/ak0115aiaea0/executive.
2011/04/25 19:29:15 59.062 -152.532 57.4 5 Alaska
USGS/SLU Moment Tensor Solution ENS 2011/04/25 19:29:15:0 59.06 -152.53 57.4 5.0 Alaska Stations used: AK.BMR AK.BPAW AK.BRLK AK.CAST AK.DHY AK.DIV AK.HOM AK.KLU AK.KTH AK.SAW AK.SCM AK.SWD AT.OHAK AT.PMR AT.SVW2 AT.TTA II.KDAK Filtering commands used: hp c 0.02 n 3 lp c 0.10 n 3 Best Fitting Double Couple Mo = 3.47e+23 dyne-cm Mw = 4.96 Z = 63 km Plane Strike Dip Rake NP1 324 67 153 NP2 65 65 25 Principal Axes: Axis Value Plunge Azimuth T 3.47e+23 35 284 N 0.00e+00 55 107 P -3.47e+23 2 15 Moment Tensor: (dyne-cm) Component Value Mxx -3.10e+23 Mxy -1.40e+23 Mxz 2.92e+22 Myy 1.98e+23 Myz -1.60e+23 Mzz 1.12e+23 ----------- P --------------- ---- #####----------------------- #########--------------------- ##############-------------------- #################------------------- ####################------------------ ######################----------------## ##### ################------------#### ###### T #################----------###### ###### ##################-------######## ############################----########## ########################################## #########################----########### #####################---------########## ###############---------------######## -----------------------------####### -----------------------------##### ---------------------------### --------------------------## ---------------------- -------------- Global CMT Convention Moment Tensor: R T P 1.12e+23 2.92e+22 1.60e+23 2.92e+22 -3.10e+23 1.40e+23 1.60e+23 1.40e+23 1.98e+23 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20110425192915/index.html |
STK = 65 DIP = 65 RAKE = 25 MW = 4.96 HS = 63.0
The NDK file is 20110425192915.ndk The waveform inversion is preferred.
The following compares this source inversion to those provided by others. The purpose is to look for major differences and also to note slight differences that might be inherent to the processing procedure. For completeness the USGS/SLU solution is repeated from above.
USGS/SLU Moment Tensor Solution ENS 2011/04/25 19:29:15:0 59.06 -152.53 57.4 5.0 Alaska Stations used: AK.BMR AK.BPAW AK.BRLK AK.CAST AK.DHY AK.DIV AK.HOM AK.KLU AK.KTH AK.SAW AK.SCM AK.SWD AT.OHAK AT.PMR AT.SVW2 AT.TTA II.KDAK Filtering commands used: hp c 0.02 n 3 lp c 0.10 n 3 Best Fitting Double Couple Mo = 3.47e+23 dyne-cm Mw = 4.96 Z = 63 km Plane Strike Dip Rake NP1 324 67 153 NP2 65 65 25 Principal Axes: Axis Value Plunge Azimuth T 3.47e+23 35 284 N 0.00e+00 55 107 P -3.47e+23 2 15 Moment Tensor: (dyne-cm) Component Value Mxx -3.10e+23 Mxy -1.40e+23 Mxz 2.92e+22 Myy 1.98e+23 Myz -1.60e+23 Mzz 1.12e+23 ----------- P --------------- ---- #####----------------------- #########--------------------- ##############-------------------- #################------------------- ####################------------------ ######################----------------## ##### ################------------#### ###### T #################----------###### ###### ##################-------######## ############################----########## ########################################## #########################----########### #####################---------########## ###############---------------######## -----------------------------####### -----------------------------##### ---------------------------### --------------------------## ---------------------- -------------- Global CMT Convention Moment Tensor: R T P 1.12e+23 2.92e+22 1.60e+23 2.92e+22 -3.10e+23 1.40e+23 1.60e+23 1.40e+23 1.98e+23 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20110425192915/index.html |
USGS/SLU Regional Moment Solution 11/04/25 19:29:15.59 Epicenter: 59.175 -152.834 MW 4.9 USGS/SLU REGIONAL MOMENT TENSOR Depth 56 No. of sta: 43 Moment Tensor; Scale 10**16 Nm Mrr= 0.48 Mtt=-1.79 Mpp= 1.31 Mrt= 0.67 Mrp= 0.78 Mtp= 2.14 Principal axes: T Val= 2.83 Plg=23 Azm=298 N 0.07 66 106 P -2.90 4 206 Best Double Couple:Mo=2.9*10**16 NP1:Strike= 74 Dip=77 Slip= 20 NP2: 340 71 166 ![]() |
![]() |
![]() |
Given the availability of digital waveforms for determination of the moment tensor, this section documents the added processing leading to mLg, if appropriate to the region, and ML by application of the respective IASPEI formulae. As a research study, the linear distance term of the IASPEI formula for ML is adjusted to remove a linear distance trend in residuals to give a regionally defined ML. The defined ML uses horizontal component recordings, but the same procedure is applied to the vertical components since there may be some interest in vertical component ground motions. Residual plots versus distance may indicate interesting features of ground motion scaling in some distance ranges. A residual plot of the regionalized magnitude is given as a function of distance and azimuth, since data sets may transcend different wave propagation provinces.
Left: ML computed using the IASPEI formula for Horizontal components. Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
Left: ML computed using the IASPEI formula for Vertical components (research). Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
![]() |
The focal mechanism was determined using broadband seismic waveforms. The location of the event (star) and the stations used for (red) the waveform inversion are shown in the next figure.
![]() |
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green's functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
hp c 0.02 n 3 lp c 0.10 n 3The results of this grid search are as follow:
DEPTH STK DIP RAKE MW FIT WVFGRD96 0.5 320 50 -30 4.01 0.2262 WVFGRD96 1.0 330 70 -15 4.00 0.2270 WVFGRD96 2.0 330 80 -10 4.13 0.2885 WVFGRD96 3.0 320 85 -45 4.24 0.3318 WVFGRD96 4.0 325 90 -35 4.25 0.3588 WVFGRD96 5.0 325 90 -30 4.28 0.3732 WVFGRD96 6.0 325 90 -30 4.30 0.3797 WVFGRD96 7.0 325 90 -25 4.33 0.3827 WVFGRD96 8.0 325 90 -30 4.37 0.3810 WVFGRD96 9.0 300 75 -25 4.39 0.3817 WVFGRD96 10.0 300 75 -25 4.41 0.3797 WVFGRD96 11.0 300 70 -25 4.44 0.3766 WVFGRD96 12.0 300 70 -25 4.45 0.3728 WVFGRD96 13.0 300 70 -25 4.47 0.3671 WVFGRD96 14.0 300 70 -25 4.48 0.3598 WVFGRD96 15.0 300 70 -25 4.49 0.3509 WVFGRD96 16.0 300 70 -25 4.50 0.3403 WVFGRD96 17.0 300 70 -25 4.51 0.3293 WVFGRD96 18.0 240 65 10 4.51 0.3219 WVFGRD96 19.0 240 65 10 4.53 0.3262 WVFGRD96 20.0 240 65 10 4.54 0.3307 WVFGRD96 21.0 235 65 10 4.55 0.3362 WVFGRD96 22.0 235 65 5 4.57 0.3443 WVFGRD96 23.0 235 65 0 4.58 0.3547 WVFGRD96 24.0 235 65 0 4.59 0.3642 WVFGRD96 25.0 235 65 0 4.61 0.3747 WVFGRD96 26.0 240 75 15 4.62 0.3867 WVFGRD96 27.0 240 75 15 4.64 0.4058 WVFGRD96 28.0 240 70 15 4.64 0.4248 WVFGRD96 29.0 240 70 15 4.66 0.4433 WVFGRD96 30.0 240 70 15 4.67 0.4597 WVFGRD96 31.0 240 70 15 4.68 0.4756 WVFGRD96 32.0 240 70 15 4.69 0.4907 WVFGRD96 33.0 240 75 10 4.70 0.5037 WVFGRD96 34.0 240 75 10 4.71 0.5139 WVFGRD96 35.0 240 75 10 4.72 0.5247 WVFGRD96 36.0 240 75 10 4.74 0.5346 WVFGRD96 37.0 240 75 10 4.75 0.5433 WVFGRD96 38.0 60 85 0 4.78 0.5544 WVFGRD96 39.0 60 85 0 4.80 0.5697 WVFGRD96 40.0 65 75 10 4.84 0.5842 WVFGRD96 41.0 65 75 10 4.86 0.5866 WVFGRD96 42.0 65 75 10 4.87 0.5867 WVFGRD96 43.0 65 75 10 4.88 0.5887 WVFGRD96 44.0 65 70 15 4.89 0.5929 WVFGRD96 45.0 65 70 15 4.90 0.5996 WVFGRD96 46.0 65 70 15 4.91 0.6074 WVFGRD96 47.0 65 70 15 4.92 0.6165 WVFGRD96 48.0 65 70 15 4.93 0.6253 WVFGRD96 49.0 65 70 15 4.93 0.6339 WVFGRD96 50.0 65 70 15 4.94 0.6407 WVFGRD96 51.0 65 65 20 4.94 0.6479 WVFGRD96 52.0 65 65 20 4.94 0.6555 WVFGRD96 53.0 65 65 20 4.95 0.6642 WVFGRD96 54.0 65 65 20 4.95 0.6695 WVFGRD96 55.0 65 65 20 4.95 0.6712 WVFGRD96 56.0 65 65 20 4.96 0.6776 WVFGRD96 57.0 65 65 20 4.96 0.6819 WVFGRD96 58.0 65 65 20 4.96 0.6839 WVFGRD96 59.0 65 65 20 4.96 0.6854 WVFGRD96 60.0 65 65 20 4.96 0.6881 WVFGRD96 61.0 65 65 25 4.96 0.6878 WVFGRD96 62.0 65 65 25 4.96 0.6866 WVFGRD96 63.0 65 65 25 4.96 0.6892 WVFGRD96 64.0 65 65 25 4.96 0.6871 WVFGRD96 65.0 65 65 25 4.96 0.6884 WVFGRD96 66.0 65 65 25 4.96 0.6872 WVFGRD96 67.0 65 65 25 4.96 0.6838 WVFGRD96 68.0 65 65 25 4.96 0.6852 WVFGRD96 69.0 65 65 25 4.96 0.6795 WVFGRD96 70.0 65 65 25 4.96 0.6806 WVFGRD96 71.0 65 65 25 4.96 0.6774 WVFGRD96 72.0 65 65 25 4.96 0.6776 WVFGRD96 73.0 65 65 25 4.96 0.6733 WVFGRD96 74.0 65 65 25 4.96 0.6720 WVFGRD96 75.0 65 70 25 4.96 0.6700 WVFGRD96 76.0 65 65 25 4.96 0.6673 WVFGRD96 77.0 65 70 25 4.96 0.6648 WVFGRD96 78.0 65 65 25 4.96 0.6627 WVFGRD96 79.0 65 70 25 4.96 0.6597 WVFGRD96 80.0 65 70 25 4.96 0.6585 WVFGRD96 81.0 65 70 25 4.96 0.6553 WVFGRD96 82.0 65 70 25 4.96 0.6531 WVFGRD96 83.0 65 70 25 4.96 0.6507 WVFGRD96 84.0 65 70 30 4.96 0.6497 WVFGRD96 85.0 65 70 30 4.96 0.6449 WVFGRD96 86.0 65 70 30 4.96 0.6463 WVFGRD96 87.0 65 70 30 4.96 0.6392 WVFGRD96 88.0 65 70 30 4.96 0.6420 WVFGRD96 89.0 65 70 30 4.96 0.6368 WVFGRD96 90.0 65 70 30 4.96 0.6369 WVFGRD96 91.0 65 70 30 4.96 0.6345 WVFGRD96 92.0 65 70 30 4.96 0.6317 WVFGRD96 93.0 65 70 30 4.96 0.6313 WVFGRD96 94.0 65 70 30 4.96 0.6259 WVFGRD96 95.0 65 70 30 4.96 0.6280 WVFGRD96 96.0 65 70 35 4.96 0.6239 WVFGRD96 97.0 65 70 35 4.96 0.6235 WVFGRD96 98.0 65 70 35 4.96 0.6213 WVFGRD96 99.0 65 70 35 4.96 0.6186
The best solution is
WVFGRD96 63.0 65 65 25 4.96 0.6892
The mechanism corresponding to the best fit is
![]() |
|
The best fit as a function of depth is given in the following figure:
![]() |
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed, the velocity model used in the predictions may not be perfect and the epicentral parameters may be be off. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
hp c 0.02 n 3 lp c 0.10 n 3
![]() |
Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated. The time scale is relative to the first trace sample. |
![]() |
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to the waveforms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
The WUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows (The format is in the model96 format of Computer Programs in Seismology).
MODEL.01 Model after 8 iterations ISOTROPIC KGS FLAT EARTH 1-D CONSTANT VELOCITY LINE08 LINE09 LINE10 LINE11 H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS 1.9000 3.4065 2.0089 2.2150 0.302E-02 0.679E-02 0.00 0.00 1.00 1.00 6.1000 5.5445 3.2953 2.6089 0.349E-02 0.784E-02 0.00 0.00 1.00 1.00 13.0000 6.2708 3.7396 2.7812 0.212E-02 0.476E-02 0.00 0.00 1.00 1.00 19.0000 6.4075 3.7680 2.8223 0.111E-02 0.249E-02 0.00 0.00 1.00 1.00 0.0000 7.9000 4.6200 3.2760 0.164E-10 0.370E-10 0.00 0.00 1.00 1.00