The ANSS event ID is nn00333406 and the event page is at https://earthquake.usgs.gov/earthquakes/eventpage/nn00333406/executive.
2011/04/17 00:55:46 38.367 -118.750 6.1 4 Nevada
USGS/SLU Moment Tensor Solution ENS 2011/04/17 00:55:46:0 38.37 -118.75 6.1 4.0 Nevada Stations used: BK.CMB BK.HOPS BK.HUMO BK.JCC BK.MCCM BK.MOD BK.ORV BK.SAO BK.WDC BK.YBH CI.PASC II.PFO LB.BMN LB.DAC NC.AFD NC.KHMB Filtering commands used: hp c 0.02 n 3 lp c 0.06 n 3 br c 0.12 0.25 n 4 p 2 Best Fitting Double Couple Mo = 1.26e+22 dyne-cm Mw = 4.00 Z = 2 km Plane Strike Dip Rake NP1 354 47 -105 NP2 195 45 -75 Principal Axes: Axis Value Plunge Azimuth T 1.26e+22 1 94 N 0.00e+00 11 4 P -1.26e+22 79 190 Moment Tensor: (dyne-cm) Component Value Mxx -3.37e+20 Mxy -1.04e+21 Mxz 2.23e+21 Myy 1.25e+22 Myz 5.96e+20 Mzz -1.22e+22 #######---#### ##########----######## ###########--------######### ##########-----------######### ##########--------------########## ##########----------------########## ##########------------------########## ##########--------------------########## ##########--------------------########## ##########----------------------########## ##########----------------------######## #########---------- ----------######## T #########---------- P ----------######## ########---------- ----------######### ########----------------------########## ########---------------------######### #######---------------------######## ######--------------------######## #####------------------####### #####----------------####### ###--------------##### #----------### Global CMT Convention Moment Tensor: R T P -1.22e+22 2.23e+21 -5.96e+20 2.23e+21 -3.37e+20 1.04e+21 -5.96e+20 1.04e+21 1.25e+22 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20110417005546/index.html |
STK = 195 DIP = 45 RAKE = -75 MW = 4.00 HS = 2.0
The NDK file is 20110417005546.ndk The waveform inversion is preferred.
The following compares this source inversion to those provided by others. The purpose is to look for major differences and also to note slight differences that might be inherent to the processing procedure. For completeness the USGS/SLU solution is repeated from above.
USGS/SLU Moment Tensor Solution ENS 2011/04/17 00:55:46:0 38.37 -118.75 6.1 4.0 Nevada Stations used: BK.CMB BK.HOPS BK.HUMO BK.JCC BK.MCCM BK.MOD BK.ORV BK.SAO BK.WDC BK.YBH CI.PASC II.PFO LB.BMN LB.DAC NC.AFD NC.KHMB Filtering commands used: hp c 0.02 n 3 lp c 0.06 n 3 br c 0.12 0.25 n 4 p 2 Best Fitting Double Couple Mo = 1.26e+22 dyne-cm Mw = 4.00 Z = 2 km Plane Strike Dip Rake NP1 354 47 -105 NP2 195 45 -75 Principal Axes: Axis Value Plunge Azimuth T 1.26e+22 1 94 N 0.00e+00 11 4 P -1.26e+22 79 190 Moment Tensor: (dyne-cm) Component Value Mxx -3.37e+20 Mxy -1.04e+21 Mxz 2.23e+21 Myy 1.25e+22 Myz 5.96e+20 Mzz -1.22e+22 #######---#### ##########----######## ###########--------######### ##########-----------######### ##########--------------########## ##########----------------########## ##########------------------########## ##########--------------------########## ##########--------------------########## ##########----------------------########## ##########----------------------######## #########---------- ----------######## T #########---------- P ----------######## ########---------- ----------######### ########----------------------########## ########---------------------######### #######---------------------######## ######--------------------######## #####------------------####### #####----------------####### ###--------------##### #----------### Global CMT Convention Moment Tensor: R T P -1.22e+22 2.23e+21 -5.96e+20 2.23e+21 -3.37e+20 1.04e+21 -5.96e+20 1.04e+21 1.25e+22 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20110417005546/index.html |
REVIEWED BY NSL STAFF Event ID:333406 Origin ID:789359 Algorithm: Ichinose (2003) Long Period, Regional-Distance Waves Seismic Moment Tensor Solution 2011/04/17 (107) 00:55:48.00 38.3690 -118.7278 789359 Depth = 2.0 (km) Mw = 4.04 Mo = 1.44x10^22 (dyne x cm) Percent Double Couple = 85 % Percent CLVD = 15 % no ISO calculated Epsilon=0.07 Percent Variance Reduction = 67.94 % Total Fit = 4.38 Major Double Couple strike dip rake Nodal Plane 1: 194 41 -79 Nodal Plane 2: 359 50 -100 DEVIATORIC MOMENT TENSOR Moment Tensor Elements: Spherical Coordinates Mrr= -1.45 Mtt= 0.10 Mff= 1.35 Mrt= 0.18 Mrf= -0.23 Mtf= 0.16 EXP=22 Moment Tensor Elements: Cartesian Coordinates 0.10 -0.16 0.18 -0.16 1.35 0.23 0.18 0.23 -1.45 Eigenvalues: T-axis eigenvalue= 1.39 N-axis eigenvalue= 0.11 P-axis eigenvalue= -1.49 Eigenvalues and eigenvectors of the Major Double Couple: T-axis ev= 1.39 trend=96 plunge=4 N-axis ev= 0.00 trend=6 plunge=8 P-axis ev=-1.39 trend=215 plunge=81 Maximum Azmuithal Gap=112 Distance to Nearest Station= 82.7 (km) Number of Stations (D=Displacement/V=Velocity) Used=6 (defining only) MLAC.CI.D CMB.BK.D DAC.LB.D BMN.LB.D FUR.CI.D ORV.BK.D ################## ##############-########## #############------########## #############---------########### ############------------############ ###########---------------############ -###########-----------------############ ###########------------------############ ###########--------------------############ ##########---------------------############ ##########---------------------############# ##########----------------------############ #########------- -------------####### ## #########------- P -------------####### T ## #########------- ------------######## # #########----------------------############ ########----------------------########### ########--------------------############ ########-------------------############ #######-----------------############ #######---------------########### #######------------########## ######---------########## ####----########## All Stations defining and nondefining: Station.Net Def Distance Azi Bazi lo-f hi-f vmodel (km) (deg) (deg) (Hz) (Hz) MLAC.CI (D) Y 82.7 187 7 0.020 0.080 MLAC.CI.wus.glib CMB.BK (D) Y 149.9 256 75 0.020 0.080 CMB.BK.wus.glib DAC.LB (D) Y 252.9 156 337 0.020 0.080 DAC.LB.wus.glib BMN.LB (D) Y 263.0 29 210 0.020 0.080 BMN.LB.wus.glib FUR.CI (D) Y 267.7 141 323 0.020 0.080 FUR.CI.wus.glib ORV.BK (D) Y 273.1 300 118 0.020 0.080 ORV.BK.wus.glib (V)-velocity (D)-Displacement Author: www-data Date: 2011/04/17 01:46:53 mtinv Version 2.1_DEVEL OCT2008 |
![]() |
Given the availability of digital waveforms for determination of the moment tensor, this section documents the added processing leading to mLg, if appropriate to the region, and ML by application of the respective IASPEI formulae. As a research study, the linear distance term of the IASPEI formula for ML is adjusted to remove a linear distance trend in residuals to give a regionally defined ML. The defined ML uses horizontal component recordings, but the same procedure is applied to the vertical components since there may be some interest in vertical component ground motions. Residual plots versus distance may indicate interesting features of ground motion scaling in some distance ranges. A residual plot of the regionalized magnitude is given as a function of distance and azimuth, since data sets may transcend different wave propagation provinces.
Left: ML computed using the IASPEI formula for Horizontal components. Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
Left: ML computed using the IASPEI formula for Vertical components (research). Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
![]() |
The focal mechanism was determined using broadband seismic waveforms. The location of the event (star) and the stations used for (red) the waveform inversion are shown in the next figure.
![]() |
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green's functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
hp c 0.02 n 3 lp c 0.06 n 3 br c 0.12 0.25 n 4 p 2The results of this grid search are as follow:
DEPTH STK DIP RAKE MW FIT WVFGRD96 0.5 200 45 -65 3.91 0.7086 WVFGRD96 1.0 195 45 -75 3.94 0.7014 WVFGRD96 2.0 195 45 -75 4.00 0.7552 WVFGRD96 3.0 195 50 -75 4.06 0.7250 WVFGRD96 4.0 200 70 -75 4.14 0.6773 WVFGRD96 5.0 195 70 -80 4.15 0.6834 WVFGRD96 6.0 195 70 -80 4.13 0.6884 WVFGRD96 7.0 190 70 -80 4.12 0.6873 WVFGRD96 8.0 190 70 -85 4.17 0.7007 WVFGRD96 9.0 195 70 -80 4.15 0.6951 WVFGRD96 10.0 195 70 -80 4.14 0.6868 WVFGRD96 11.0 195 70 -75 4.13 0.6779 WVFGRD96 12.0 195 70 -75 4.12 0.6697 WVFGRD96 13.0 195 70 -75 4.11 0.6615 WVFGRD96 14.0 60 60 45 4.14 0.6618 WVFGRD96 15.0 60 60 45 4.15 0.6639 WVFGRD96 16.0 60 60 40 4.15 0.6643 WVFGRD96 17.0 60 60 40 4.15 0.6627 WVFGRD96 18.0 60 60 40 4.16 0.6599 WVFGRD96 19.0 60 60 40 4.17 0.6557 WVFGRD96 20.0 60 60 40 4.17 0.6505 WVFGRD96 21.0 60 60 40 4.18 0.6397 WVFGRD96 22.0 60 60 40 4.19 0.6324 WVFGRD96 23.0 60 60 40 4.19 0.6242 WVFGRD96 24.0 60 60 40 4.20 0.6153 WVFGRD96 25.0 60 60 40 4.20 0.6060 WVFGRD96 26.0 60 60 40 4.21 0.5963 WVFGRD96 27.0 60 60 40 4.22 0.5861 WVFGRD96 28.0 60 60 40 4.22 0.5758 WVFGRD96 29.0 65 55 45 4.22 0.5656
The best solution is
WVFGRD96 2.0 195 45 -75 4.00 0.7552
The mechanism corresponding to the best fit is
![]() |
|
The best fit as a function of depth is given in the following figure:
![]() |
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed, the velocity model used in the predictions may not be perfect and the epicentral parameters may be be off. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
hp c 0.02 n 3 lp c 0.06 n 3 br c 0.12 0.25 n 4 p 2
![]() |
Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated. The time scale is relative to the first trace sample. |
![]() |
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to the waveforms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
The WUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows (The format is in the model96 format of Computer Programs in Seismology).
MODEL.01 Model after 8 iterations ISOTROPIC KGS FLAT EARTH 1-D CONSTANT VELOCITY LINE08 LINE09 LINE10 LINE11 H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS 1.9000 3.4065 2.0089 2.2150 0.302E-02 0.679E-02 0.00 0.00 1.00 1.00 6.1000 5.5445 3.2953 2.6089 0.349E-02 0.784E-02 0.00 0.00 1.00 1.00 13.0000 6.2708 3.7396 2.7812 0.212E-02 0.476E-02 0.00 0.00 1.00 1.00 19.0000 6.4075 3.7680 2.8223 0.111E-02 0.249E-02 0.00 0.00 1.00 1.00 0.0000 7.9000 4.6200 3.2760 0.164E-10 0.370E-10 0.00 0.00 1.00 1.00