The ANSS event ID is nn00424006 and the event page is at https://earthquake.usgs.gov/earthquakes/eventpage/nn00424006/executive.
2011/04/17 00:45:37 38.389 -118.743 5.1 4.6 Nevada
USGS/SLU Moment Tensor Solution
ENS 2011/04/17 00:45:37:0 38.39 -118.74 5.1 4.6 Nevada
Stations used:
BK.CMB BK.HOPS BK.MOD BK.ORV BK.SAO BK.WDC BK.YBH CI.GSC
CI.ISA CI.LDF CI.MWC CI.OSI CI.PASC LB.BMN NC.AFD NC.KMR
NC.MDPB UU.CCUT UU.LCMT UU.PSUT UU.SZCU
Filtering commands used:
hp c 0.02 n 3
lp c 0.06 n 3
br c 0.12 0.25 n 4 p 2
Best Fitting Double Couple
Mo = 6.84e+22 dyne-cm
Mw = 4.49
Z = 2 km
Plane Strike Dip Rake
NP1 358 48 -109
NP2 205 45 -70
Principal Axes:
Axis Value Plunge Azimuth
T 6.84e+22 2 101
N 0.00e+00 14 11
P -6.84e+22 76 198
Moment Tensor: (dyne-cm)
Component Value
Mxx -1.19e+21
Mxy -1.40e+22
Mxz 1.50e+22
Myy 6.55e+22
Myz 6.99e+21
Mzz -6.43e+22
########------
##############-#######
#############------#########
############---------#########
############------------##########
###########---------------##########
###########-----------------##########
###########-------------------##########
##########--------------------##########
##########---------------------###########
#########----------------------###########
#########----------------------#########
#########--------- ----------######### T
#######---------- P ----------#########
#######---------- ----------##########
######----------------------##########
######---------------------#########
#####--------------------#########
###-------------------########
###-----------------########
#---------------######
----------####
Global CMT Convention Moment Tensor:
R T P
-6.43e+22 1.50e+22 -6.99e+21
1.50e+22 -1.19e+21 1.40e+22
-6.99e+21 1.40e+22 6.55e+22
Details of the solution is found at
http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20110417004537/index.html
|
STK = 205
DIP = 45
RAKE = -70
MW = 4.49
HS = 2.0
The NDK file is 20110417004537.ndk The waveform inversion is preferred.
The following compares this source inversion to those provided by others. The purpose is to look for major differences and also to note slight differences that might be inherent to the processing procedure. For completeness the USGS/SLU solution is repeated from above.
USGS/SLU Moment Tensor Solution
ENS 2011/04/17 00:45:37:0 38.39 -118.74 5.1 4.6 Nevada
Stations used:
BK.CMB BK.HOPS BK.MOD BK.ORV BK.SAO BK.WDC BK.YBH CI.GSC
CI.ISA CI.LDF CI.MWC CI.OSI CI.PASC LB.BMN NC.AFD NC.KMR
NC.MDPB UU.CCUT UU.LCMT UU.PSUT UU.SZCU
Filtering commands used:
hp c 0.02 n 3
lp c 0.06 n 3
br c 0.12 0.25 n 4 p 2
Best Fitting Double Couple
Mo = 6.84e+22 dyne-cm
Mw = 4.49
Z = 2 km
Plane Strike Dip Rake
NP1 358 48 -109
NP2 205 45 -70
Principal Axes:
Axis Value Plunge Azimuth
T 6.84e+22 2 101
N 0.00e+00 14 11
P -6.84e+22 76 198
Moment Tensor: (dyne-cm)
Component Value
Mxx -1.19e+21
Mxy -1.40e+22
Mxz 1.50e+22
Myy 6.55e+22
Myz 6.99e+21
Mzz -6.43e+22
########------
##############-#######
#############------#########
############---------#########
############------------##########
###########---------------##########
###########-----------------##########
###########-------------------##########
##########--------------------##########
##########---------------------###########
#########----------------------###########
#########----------------------#########
#########--------- ----------######### T
#######---------- P ----------#########
#######---------- ----------##########
######----------------------##########
######---------------------#########
#####--------------------#########
###-------------------########
###-----------------########
#---------------######
----------####
Global CMT Convention Moment Tensor:
R T P
-6.43e+22 1.50e+22 -6.99e+21
1.50e+22 -1.19e+21 1.40e+22
-6.99e+21 1.40e+22 6.55e+22
Details of the solution is found at
http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20110417004537/index.html
|
REVIEWED BY NSL STAFF
Event ID:333401
Origin ID:789346
Algorithm: Ichinose (2003) Long Period, Regional-Distance Waves
Seismic Moment Tensor Solution
2011/04/17 (107) 00:45:38.00 38.3943 -118.7348 789346
Depth = 2.0 (km)
Mw = 4.60
Mo = 9.98x10^22 (dyne x cm)
Percent Double Couple = 95 %
Percent CLVD = 5 %
no ISO calculated
Epsilon=0.02
Percent Variance Reduction = 79.76 %
Total Fit = 13.41
Major Double Couple
strike dip rake
Nodal Plane 1: 32 32 -60
Nodal Plane 2: 178 63 -107
DEVIATORIC MOMENT TENSOR
Moment Tensor Elements: Spherical Coordinates
Mrr= -7.82 Mtt= 0.01 Mff= 7.81
Mrt= -1.67 Mrf= 5.54 Mtf= 2.25 EXP=22
Moment Tensor Elements: Cartesian Coordinates
0.01 -2.25 -1.67
-2.25 7.81 -5.54
-1.67 -5.54 -7.82
Eigenvalues:
T-axis eigenvalue= 9.85
N-axis eigenvalue= 0.25
P-axis eigenvalue=-10.10
Eigenvalues and eigenvectors of the Major Double Couple:
T-axis ev= 9.85 trend=280 plunge=16
N-axis ev= 0.00 trend=186 plunge=15
P-axis ev=-9.85 trend=55 plunge=67
Maximum Azmuithal Gap=203 Distance to Nearest Station= 85.4 (km)
Number of Stations (D=Displacement/V=Velocity) Used=7 (defining only)
MLAC.CI.D CMB.BK.D TIN.CI.D HELL.BK.D
DAC.LB.D FUR.CI.D ORV.BK.D
########---------
##########--------------#
###########---------------###
#############----------------####
#############------------------#####
#############--------------------#####
-##############---------------------#####
###############---------------------#####
##############---------- ---------######
T ##############---------- P ---------######
##############---------- ---------#######
###############----------------------#######
###############----------------------#######
###############---------------------########
###############--------------------########
################------------------#########
###############-----------------#########
##############----------------##########
###############-------------###########
##############----------############
##############------#############
#############-###############
#########################
-------###########
All Stations defining and nondefining:
Station.Net Def Distance Azi Bazi lo-f hi-f vmodel
(km) (deg) (deg) (Hz) (Hz)
MLAC.CI (D) Y 85.4 186 6 0.020 0.080 MLAC.CI.wus.glib
CMB.BK (D) Y 150.1 255 74 0.020 0.080 CMB.BK.wus.glib
TIN.CI (D) Y 155.8 163 344 0.020 0.080 TIN.CI.wus.glib
HELL.BK (D) Y 192.1 188 7 0.020 0.080 HELL.BK.wus.glib
DAC.LB (D) Y 255.8 156 337 0.020 0.080 DAC.LB.wus.glib
FUR.CI (D) Y 270.3 142 323 0.020 0.080 FUR.CI.wus.glib
ORV.BK (D) Y 271.2 299 117 0.020 0.080 ORV.BK.wus.glib
(V)-velocity (D)-Displacement
Author: www-data
Date: 2011/04/17 01:38:04
mtinv Version 2.1_DEVEL OCT2008
|
|
Given the availability of digital waveforms for determination of the moment tensor, this section documents the added processing leading to mLg, if appropriate to the region, and ML by application of the respective IASPEI formulae. As a research study, the linear distance term of the IASPEI formula for ML is adjusted to remove a linear distance trend in residuals to give a regionally defined ML. The defined ML uses horizontal component recordings, but the same procedure is applied to the vertical components since there may be some interest in vertical component ground motions. Residual plots versus distance may indicate interesting features of ground motion scaling in some distance ranges. A residual plot of the regionalized magnitude is given as a function of distance and azimuth, since data sets may transcend different wave propagation provinces.
Left: ML computed using the IASPEI formula for Horizontal components. Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
Left: ML computed using the IASPEI formula for Vertical components (research). Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
![]() |
The focal mechanism was determined using broadband seismic waveforms. The location of the event (star) and the stations used for (red) the waveform inversion are shown in the next figure.
|
|
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green's functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
hp c 0.02 n 3 lp c 0.06 n 3 br c 0.12 0.25 n 4 p 2The results of this grid search are as follow:
DEPTH STK DIP RAKE MW FIT
WVFGRD96 1.0 220 55 -50 4.42 0.6597
WVFGRD96 2.0 205 45 -70 4.49 0.7309
WVFGRD96 3.0 215 55 -60 4.54 0.7131
WVFGRD96 4.0 210 70 -75 4.63 0.6719
WVFGRD96 5.0 210 75 -75 4.64 0.6744
WVFGRD96 6.0 200 70 -80 4.63 0.6760
WVFGRD96 7.0 200 70 -80 4.61 0.6744
WVFGRD96 8.0 200 70 -80 4.66 0.6878
WVFGRD96 9.0 200 70 -80 4.65 0.6835
WVFGRD96 10.0 205 70 -80 4.63 0.6759
WVFGRD96 11.0 205 70 -80 4.62 0.6683
WVFGRD96 12.0 205 70 -75 4.61 0.6612
WVFGRD96 13.0 205 70 -75 4.61 0.6537
WVFGRD96 14.0 210 75 -70 4.60 0.6475
WVFGRD96 15.0 210 75 -70 4.60 0.6418
WVFGRD96 16.0 210 75 -70 4.60 0.6368
WVFGRD96 17.0 210 75 -70 4.60 0.6308
WVFGRD96 18.0 210 75 -70 4.60 0.6245
WVFGRD96 19.0 210 75 -65 4.61 0.6203
WVFGRD96 20.0 215 80 -60 4.61 0.6142
WVFGRD96 21.0 215 80 -60 4.63 0.6122
WVFGRD96 22.0 215 80 -60 4.63 0.6057
WVFGRD96 23.0 215 80 -60 4.64 0.5985
WVFGRD96 24.0 215 80 -60 4.64 0.5928
WVFGRD96 25.0 215 80 -60 4.65 0.5850
WVFGRD96 26.0 85 30 -10 4.64 0.5735
WVFGRD96 27.0 85 30 -10 4.65 0.5666
WVFGRD96 28.0 85 30 -10 4.65 0.5581
WVFGRD96 29.0 190 55 80 4.64 0.5499
The best solution is
WVFGRD96 2.0 205 45 -70 4.49 0.7309
The mechanism corresponding to the best fit is
|
|
|
The best fit as a function of depth is given in the following figure:
|
|
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed, the velocity model used in the predictions may not be perfect and the epicentral parameters may be be off. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
hp c 0.02 n 3 lp c 0.06 n 3 br c 0.12 0.25 n 4 p 2
|
| Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated. The time scale is relative to the first trace sample. |
|
| Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to the waveforms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
The WUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows (The format is in the model96 format of Computer Programs in Seismology).
MODEL.01
Model after 8 iterations
ISOTROPIC
KGS
FLAT EARTH
1-D
CONSTANT VELOCITY
LINE08
LINE09
LINE10
LINE11
H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS
1.9000 3.4065 2.0089 2.2150 0.302E-02 0.679E-02 0.00 0.00 1.00 1.00
6.1000 5.5445 3.2953 2.6089 0.349E-02 0.784E-02 0.00 0.00 1.00 1.00
13.0000 6.2708 3.7396 2.7812 0.212E-02 0.476E-02 0.00 0.00 1.00 1.00
19.0000 6.4075 3.7680 2.8223 0.111E-02 0.249E-02 0.00 0.00 1.00 1.00
0.0000 7.9000 4.6200 3.2760 0.164E-10 0.370E-10 0.00 0.00 1.00 1.00