Location

Location ANSS

The ANSS event ID is nn00423604 and the event page is at https://earthquake.usgs.gov/earthquakes/eventpage/nn00423604/executive.

2011/04/16 09:46:32 38.283 -118.205 14.8 4 Nevada

Focal Mechanism

 USGS/SLU Moment Tensor Solution
 ENS  2011/04/16 09:46:32:0  38.28 -118.21  14.8 4.0 Nevada
 
 Stations used:
   BK.CMB BK.HATC BK.HUMO BK.MHC BK.ORV BK.PKD BK.SAO BK.WDC 
   BK.WENL BK.YBH CI.BBR CI.BEL CI.DPP CI.FMP CI.GSC CI.HEC 
   CI.ISA CI.LDF CI.MLAC CI.PASC CI.PLM CI.RVR CI.SPG2 CI.TIN 
   II.PFO LB.DAC NC.MDPB NC.PAGB UU.BGU UU.PSUT 
 
 Filtering commands used:
   hp c 0.02 n 3
   lp c 0.08 n 3
   br c 0.12 0.25 n 4 p 2
 
 Best Fitting Double Couple
  Mo = 3.51e+21 dyne-cm
  Mw = 3.63 
  Z  = 16 km
  Plane   Strike  Dip  Rake
   NP1      334    76   -164
   NP2      240    75   -15
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   3.51e+21      0     107
    N   0.00e+00     69      16
    P  -3.51e+21     21     197

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx    -2.49e+21
       Mxy    -1.83e+21
       Mxz     1.12e+21
       Myy     2.95e+21
       Myz     3.66e+20
       Mzz    -4.54e+20
                                                     
                                                     
                                                     
                                                     
                     --------------                  
                 ###-------------------              
              ########--------------------           
             ###########-------------------          
           ##############--------------------        
          ################------------------##       
         ###################---------##########      
        #####################---################     
        ####################--##################     
       ##################------##################    
       ###############----------#################    
       #############-------------################    
       ##########----------------################    
        #######-------------------############       
        #####----------------------########### T     
         ##------------------------###########       
          --------------------------##########       
           -------------------------#########        
             ---------   ------------######          
              -------- P ------------#####           
                 -----   ------------##              
                     --------------                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
 -4.54e+20   1.12e+21  -3.66e+20 
  1.12e+21  -2.49e+21   1.83e+21 
 -3.66e+20   1.83e+21   2.95e+21 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20110416094632/index.html
        

Preferred Solution

The preferred solution from an analysis of the surface-wave spectral amplitude radiation pattern, waveform inversion or first motion observations is

      STK = 240
      DIP = 75
     RAKE = -15
       MW = 3.63
       HS = 16.0

The NDK file is 20110416094632.ndk The waveform inversion is preferred.

Moment Tensor Comparison

The following compares this source inversion to those provided by others. The purpose is to look for major differences and also to note slight differences that might be inherent to the processing procedure. For completeness the USGS/SLU solution is repeated from above.
        
SLU
UNR
 USGS/SLU Moment Tensor Solution
 ENS  2011/04/16 09:46:32:0  38.28 -118.21  14.8 4.0 Nevada
 
 Stations used:
   BK.CMB BK.HATC BK.HUMO BK.MHC BK.ORV BK.PKD BK.SAO BK.WDC 
   BK.WENL BK.YBH CI.BBR CI.BEL CI.DPP CI.FMP CI.GSC CI.HEC 
   CI.ISA CI.LDF CI.MLAC CI.PASC CI.PLM CI.RVR CI.SPG2 CI.TIN 
   II.PFO LB.DAC NC.MDPB NC.PAGB UU.BGU UU.PSUT 
 
 Filtering commands used:
   hp c 0.02 n 3
   lp c 0.08 n 3
   br c 0.12 0.25 n 4 p 2
 
 Best Fitting Double Couple
  Mo = 3.51e+21 dyne-cm
  Mw = 3.63 
  Z  = 16 km
  Plane   Strike  Dip  Rake
   NP1      334    76   -164
   NP2      240    75   -15
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   3.51e+21      0     107
    N   0.00e+00     69      16
    P  -3.51e+21     21     197

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx    -2.49e+21
       Mxy    -1.83e+21
       Mxz     1.12e+21
       Myy     2.95e+21
       Myz     3.66e+20
       Mzz    -4.54e+20
                                                     
                                                     
                                                     
                                                     
                     --------------                  
                 ###-------------------              
              ########--------------------           
             ###########-------------------          
           ##############--------------------        
          ################------------------##       
         ###################---------##########      
        #####################---################     
        ####################--##################     
       ##################------##################    
       ###############----------#################    
       #############-------------################    
       ##########----------------################    
        #######-------------------############       
        #####----------------------########### T     
         ##------------------------###########       
          --------------------------##########       
           -------------------------#########        
             ---------   ------------######          
              -------- P ------------#####           
                 -----   ------------##              
                     --------------                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
 -4.54e+20   1.12e+21  -3.66e+20 
  1.12e+21  -2.49e+21   1.83e+21 
 -3.66e+20   1.83e+21   2.95e+21 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20110416094632/index.html
	
Event ID:333335
Origin ID:789265
Algorithm: Ichinose (2003) Long Period, Regional-Distance Waves
Seismic Moment Tensor Solution

2011/04/16 (106) 09:46:32.00 38.2863 -118.2211 789265
	Depth =  10.0 (km)
	Mw    =  3.53
	Mo    =  2.49x10^21 (dyne x cm)

	Percent Double Couple =  98 %
	Percent CLVD          =   2 %
	no ISO calculated
	Epsilon=-0.01
	 Percent Variance Reduction =  67.33 %
	 Total Fit                  =  21.79 
	Major Double Couple
		            strike dip   rake
		Nodal Plane 1: 245  86    0
		Nodal Plane 2: 155  90  176

	DEVIATORIC MOMENT TENSOR

	Moment Tensor Elements: Spherical Coordinates
		Mrr= -0.02 Mtt= -1.91 Mff=  1.93
		Mrt=  0.07 Mrf= -0.17 Mtf=  1.58 EXP=21


	Moment Tensor Elements: Cartesian Coordinates
		-1.91 -1.58  0.07
		-1.58  1.93  0.17
		 0.07  0.17 -0.02

	Eigenvalues:
		T-axis eigenvalue=  2.51
		N-axis eigenvalue= -0.03
		P-axis eigenvalue= -2.48

	Eigenvalues and eigenvectors of the Major Double Couple:
		T-axis ev= 2.51 trend=110 plunge=3
		N-axis ev= 0.00 trend=331 plunge=86
		P-axis ev=-2.51 trend=200 plunge=3

	Maximum Azmuithal Gap=185 Distance to Nearest Station= 90.9 (km)

	Number of Stations (D=Displacement/V=Velocity) Used=6 (defining only)
		
	 MLAC.CI.D TIN.CI.D CMB.BK.D R11A.TA.D
	 DAC.LB.D FUR.CI.D


              -----------------                             
          ####---------------------                         
        #######----------------------                       
      ##########-----------------------                     
     ############-----------------------                    
    ##############-----------------------                   
  -################-----------------------#                 
  ##################----------------#######                 
 ###################------------############                
 ####################-------################                
 #####################--#####################               
 ############################################               
 ###################--#######################               
 ################------######################               
 ############-----------####################                
 #########---------------###############   #                
  ####--------------------############## T                  
   #----------------------##############                    
   ------------------------###############                  
     -----------------------#############                   
      -----------------------##########                     
        ----------------------#######                       
          -   -----------------####                         
            P -----------------                             
                                                            


All Stations defining and nondefining: 
Station.Net 	Def 	Distance 	Azi    	Bazi  	lo-f 	hi-f vmodel
            	    	(km)     	(deg)  	(deg) 	(Hz) 	(Hz)    
MLAC.CI (D) 	Y 	    90.9  	217  	 36  	0.020 	0.080 MLAC.CI.wus.glib
TIN.CI (D) 	Y 	   137.4  	180  	  0  	0.020 	0.080 TIN.CI.wus.glib
CMB.BK (D) 	Y 	   191.6  	262  	 81  	0.020 	0.080 CMB.BK.wus.glib
R11A.TA (D) 	Y 	   229.5  	 87  	269  	0.020 	0.080 R11A.TA.wus.glib
DAC.LB (D) 	Y 	   229.8  	166  	346  	0.020 	0.080 DAC.LB.wus.glib
FUR.CI (D) 	Y 	   234.9  	149  	330  	0.020 	0.080 FUR.CI.wus.glib

 (V)-velocity (D)-Displacement

Author: www-data
Date: 2011/04/16 10:25:49

Magnitudes

Given the availability of digital waveforms for determination of the moment tensor, this section documents the added processing leading to mLg, if appropriate to the region, and ML by application of the respective IASPEI formulae. As a research study, the linear distance term of the IASPEI formula for ML is adjusted to remove a linear distance trend in residuals to give a regionally defined ML. The defined ML uses horizontal component recordings, but the same procedure is applied to the vertical components since there may be some interest in vertical component ground motions. Residual plots versus distance may indicate interesting features of ground motion scaling in some distance ranges. A residual plot of the regionalized magnitude is given as a function of distance and azimuth, since data sets may transcend different wave propagation provinces.

ML Magnitude


Left: ML computed using the IASPEI formula for Horizontal components. Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot. Right: Residuals from new relation as a function of distance and azimuth.


Left: ML computed using the IASPEI formula for Vertical components (research). Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot. Right: Residuals from new relation as a function of distance and azimuth.

Context

The left panel of the next figure presents the focal mechanism for this earthquake (red) in the context of other nearby events (blue) in the SLU Moment Tensor Catalog. The right panel shows the inferred direction of maximum compressive stress and the type of faulting (green is strike-slip, red is normal, blue is thrust; oblique is shown by a combination of colors). Thus context plot is useful for assessing the appropriateness of the moment tensor of this event.

Waveform Inversion using wvfgrd96

The focal mechanism was determined using broadband seismic waveforms. The location of the event (star) and the stations used for (red) the waveform inversion are shown in the next figure.
Location of broadband stations used for waveform inversion

The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green's functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.

The observed and predicted traces are filtered using the following gsac commands:

hp c 0.02 n 3
lp c 0.08 n 3
br c 0.12 0.25 n 4 p 2
The results of this grid search are as follow:

           DEPTH  STK   DIP  RAKE   MW    FIT
WVFGRD96    0.5    65    85     0   3.23 0.3528
WVFGRD96    1.0    65    85     0   3.27 0.3832
WVFGRD96    2.0    60    75   -15   3.39 0.4795
WVFGRD96    3.0    60    75   -15   3.43 0.5077
WVFGRD96    4.0   230    60   -40   3.52 0.5317
WVFGRD96    5.0   230    60   -40   3.53 0.5527
WVFGRD96    6.0   235    65   -30   3.52 0.5639
WVFGRD96    7.0   235    70   -30   3.53 0.5699
WVFGRD96    8.0   235    65   -30   3.56 0.5872
WVFGRD96    9.0   235    65   -30   3.57 0.5917
WVFGRD96   10.0   240    70   -20   3.57 0.5972
WVFGRD96   11.0   240    75   -20   3.58 0.6031
WVFGRD96   12.0   240    75   -20   3.59 0.6082
WVFGRD96   13.0   240    75   -15   3.60 0.6122
WVFGRD96   14.0   240    75   -15   3.61 0.6148
WVFGRD96   15.0   240    75   -15   3.62 0.6161
WVFGRD96   16.0   240    75   -15   3.63 0.6165
WVFGRD96   17.0   240    75   -15   3.65 0.6161
WVFGRD96   18.0   240    75   -10   3.65 0.6144
WVFGRD96   19.0   240    75   -10   3.66 0.6121
WVFGRD96   20.0   245    80    -5   3.67 0.6098
WVFGRD96   21.0   245    80    -5   3.68 0.6062
WVFGRD96   22.0   245    80    -5   3.69 0.6016
WVFGRD96   23.0   245    80    -5   3.70 0.5962
WVFGRD96   24.0   245    80    -5   3.71 0.5896
WVFGRD96   25.0   245    80    -5   3.71 0.5816
WVFGRD96   26.0   245    80    -5   3.72 0.5730
WVFGRD96   27.0   245    80    -5   3.73 0.5636
WVFGRD96   28.0   245    80    -5   3.74 0.5533
WVFGRD96   29.0   245    80     0   3.74 0.5429

The best solution is

WVFGRD96   16.0   240    75   -15   3.63 0.6165

The mechanism corresponding to the best fit is
Figure 1. Waveform inversion focal mechanism

The best fit as a function of depth is given in the following figure:

Figure 2. Depth sensitivity for waveform mechanism

The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed, the velocity model used in the predictions may not be perfect and the epicentral parameters may be be off. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).

The bandpass filter used in the processing and for the display was

hp c 0.02 n 3
lp c 0.08 n 3
br c 0.12 0.25 n 4 p 2
Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated. The time scale is relative to the first trace sample.

Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to the waveforms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure.

A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:

Assuming only a mislocation, the time shifts are fit to a functional form:

 Time_shift = A + B cos Azimuth + C Sin Azimuth

The time shifts for this inversion lead to the next figure:

The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.

Velocity Model

The WUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows (The format is in the model96 format of Computer Programs in Seismology).

MODEL.01
Model after     8 iterations
ISOTROPIC
KGS
FLAT EARTH
1-D
CONSTANT VELOCITY
LINE08
LINE09
LINE10
LINE11
      H(KM)   VP(KM/S)   VS(KM/S) RHO(GM/CC)         QP         QS       ETAP       ETAS      FREFP      FREFS
     1.9000     3.4065     2.0089     2.2150  0.302E-02  0.679E-02   0.00       0.00       1.00       1.00    
     6.1000     5.5445     3.2953     2.6089  0.349E-02  0.784E-02   0.00       0.00       1.00       1.00    
    13.0000     6.2708     3.7396     2.7812  0.212E-02  0.476E-02   0.00       0.00       1.00       1.00    
    19.0000     6.4075     3.7680     2.8223  0.111E-02  0.249E-02   0.00       0.00       1.00       1.00    
     0.0000     7.9000     4.6200     3.2760  0.164E-10  0.370E-10   0.00       0.00       1.00       1.00    
Last Changed Sat Apr 27 01:02:43 PM CDT 2024