The ANSS event ID is ak0113v5ldih and the event page is at https://earthquake.usgs.gov/earthquakes/eventpage/ak0113v5ldih/executive.
2011/03/25 14:19:38 62.659 -151.482 118.5 4.4 Alaska
USGS/SLU Moment Tensor Solution ENS 2011/03/25 14:19:38:0 62.66 -151.48 118.5 4.4 Alaska Stations used: AK.BPAW AK.CAST AK.DHY AK.KTH AK.MCK AK.MDM AK.MLY AK.PPLA AK.RC01 AK.RND AK.SAW AK.SCM AK.SWD AK.TRF AK.WRH AT.PMR Filtering commands used: hp c 0.02 n 3 lp c 0.08 n 3 Best Fitting Double Couple Mo = 4.22e+22 dyne-cm Mw = 4.35 Z = 108 km Plane Strike Dip Rake NP1 80 80 -50 NP2 182 41 -165 Principal Axes: Axis Value Plunge Azimuth T 4.22e+22 24 140 N 0.00e+00 39 252 P -4.22e+22 41 27 Moment Tensor: (dyne-cm) Component Value Mxx 1.59e+21 Mxy -2.70e+22 Mxz -3.07e+22 Myy 9.46e+21 Myz 6.36e+20 Mzz -1.10e+22 #####--------- ######---------------- ########-------------------- #######----------------------- ########------------- ---------- ########-------------- P ----------- ########--------------- ------------ #########------------------------------- ########-------------------------------- #########-------------------------------## #########--------------------------####### #########--------------------############# #########-----------###################### --------################################ ---------############################### --------############################## --------################### ###### --------################## T ##### -------################# ### -------##################### ------################ ----########## Global CMT Convention Moment Tensor: R T P -1.10e+22 -3.07e+22 -6.36e+20 -3.07e+22 1.59e+21 2.70e+22 -6.36e+20 2.70e+22 9.46e+21 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20110325141938/index.html |
STK = 80 DIP = 80 RAKE = -50 MW = 4.35 HS = 108.0
The NDK file is 20110325141938.ndk The waveform inversion is preferred.
Given the availability of digital waveforms for determination of the moment tensor, this section documents the added processing leading to mLg, if appropriate to the region, and ML by application of the respective IASPEI formulae. As a research study, the linear distance term of the IASPEI formula for ML is adjusted to remove a linear distance trend in residuals to give a regionally defined ML. The defined ML uses horizontal component recordings, but the same procedure is applied to the vertical components since there may be some interest in vertical component ground motions. Residual plots versus distance may indicate interesting features of ground motion scaling in some distance ranges. A residual plot of the regionalized magnitude is given as a function of distance and azimuth, since data sets may transcend different wave propagation provinces.
Left: ML computed using the IASPEI formula for Horizontal components. Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
Left: ML computed using the IASPEI formula for Vertical components (research). Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
![]() |
The focal mechanism was determined using broadband seismic waveforms. The location of the event (star) and the stations used for (red) the waveform inversion are shown in the next figure.
![]() |
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green's functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
hp c 0.02 n 3 lp c 0.08 n 3The results of this grid search are as follow:
DEPTH STK DIP RAKE MW FIT WVFGRD96 2.0 195 70 20 3.42 0.2492 WVFGRD96 4.0 10 70 -10 3.50 0.2576 WVFGRD96 6.0 315 60 20 3.57 0.2760 WVFGRD96 8.0 315 60 20 3.64 0.2960 WVFGRD96 10.0 315 60 20 3.67 0.3067 WVFGRD96 12.0 135 65 25 3.71 0.3139 WVFGRD96 14.0 130 65 20 3.73 0.3228 WVFGRD96 16.0 130 65 20 3.76 0.3291 WVFGRD96 18.0 105 65 5 3.78 0.3366 WVFGRD96 20.0 105 65 5 3.80 0.3483 WVFGRD96 22.0 105 65 5 3.82 0.3589 WVFGRD96 24.0 105 70 5 3.84 0.3696 WVFGRD96 26.0 105 65 5 3.86 0.3796 WVFGRD96 28.0 105 65 5 3.88 0.3877 WVFGRD96 30.0 110 60 15 3.91 0.3941 WVFGRD96 32.0 110 65 15 3.92 0.4007 WVFGRD96 34.0 110 65 15 3.94 0.4065 WVFGRD96 36.0 100 80 -20 3.94 0.4119 WVFGRD96 38.0 100 80 -20 3.97 0.4188 WVFGRD96 40.0 95 75 -30 4.04 0.4262 WVFGRD96 42.0 95 70 -30 4.06 0.4287 WVFGRD96 44.0 95 70 -25 4.08 0.4287 WVFGRD96 46.0 95 70 -25 4.09 0.4287 WVFGRD96 48.0 95 60 -20 4.12 0.4320 WVFGRD96 50.0 95 60 -15 4.14 0.4347 WVFGRD96 52.0 95 60 -20 4.15 0.4385 WVFGRD96 54.0 95 60 -20 4.16 0.4420 WVFGRD96 56.0 95 60 -15 4.18 0.4474 WVFGRD96 58.0 95 65 -20 4.18 0.4525 WVFGRD96 60.0 95 60 -15 4.21 0.4592 WVFGRD96 62.0 95 60 -15 4.22 0.4645 WVFGRD96 64.0 90 75 -35 4.20 0.4705 WVFGRD96 66.0 90 75 -35 4.21 0.4792 WVFGRD96 68.0 90 75 -40 4.22 0.4880 WVFGRD96 70.0 85 75 -45 4.23 0.4956 WVFGRD96 72.0 85 75 -45 4.24 0.5055 WVFGRD96 74.0 85 75 -45 4.25 0.5152 WVFGRD96 76.0 85 70 -40 4.26 0.5234 WVFGRD96 78.0 85 70 -40 4.27 0.5328 WVFGRD96 80.0 85 75 -45 4.27 0.5408 WVFGRD96 82.0 85 75 -40 4.28 0.5493 WVFGRD96 84.0 85 75 -40 4.29 0.5582 WVFGRD96 86.0 85 75 -40 4.30 0.5643 WVFGRD96 88.0 80 75 -45 4.31 0.5725 WVFGRD96 90.0 80 75 -45 4.32 0.5782 WVFGRD96 92.0 80 75 -45 4.32 0.5845 WVFGRD96 94.0 80 75 -45 4.33 0.5878 WVFGRD96 96.0 80 75 -45 4.33 0.5913 WVFGRD96 98.0 80 80 -50 4.33 0.5936 WVFGRD96 100.0 80 80 -50 4.34 0.5975 WVFGRD96 101.0 80 80 -50 4.34 0.5982 WVFGRD96 102.0 80 80 -50 4.34 0.5983 WVFGRD96 103.0 80 80 -50 4.34 0.6006 WVFGRD96 104.0 80 80 -50 4.34 0.6006 WVFGRD96 105.0 80 80 -50 4.35 0.6007 WVFGRD96 106.0 80 80 -50 4.35 0.6002 WVFGRD96 107.0 80 80 -50 4.35 0.6008 WVFGRD96 108.0 80 80 -50 4.35 0.6009 WVFGRD96 109.0 80 80 -45 4.35 0.6007 WVFGRD96 110.0 80 80 -45 4.36 0.6000 WVFGRD96 111.0 80 80 -45 4.36 0.5994 WVFGRD96 112.0 80 80 -45 4.36 0.5997 WVFGRD96 113.0 85 85 -45 4.35 0.5992 WVFGRD96 114.0 85 85 -45 4.35 0.5989 WVFGRD96 115.0 85 85 -45 4.35 0.5978 WVFGRD96 116.0 85 85 -45 4.36 0.5977 WVFGRD96 117.0 85 85 -45 4.36 0.5982 WVFGRD96 118.0 85 85 -45 4.36 0.5968 WVFGRD96 119.0 85 85 -45 4.36 0.5961 WVFGRD96 120.0 85 85 -45 4.36 0.5943 WVFGRD96 121.0 85 85 -45 4.36 0.5941 WVFGRD96 122.0 85 85 -45 4.36 0.5937 WVFGRD96 123.0 85 85 -45 4.36 0.5916 WVFGRD96 124.0 85 85 -45 4.37 0.5905 WVFGRD96 125.0 85 85 -45 4.37 0.5885
The best solution is
WVFGRD96 108.0 80 80 -50 4.35 0.6009
The mechanism corresponding to the best fit is
![]() |
|
The best fit as a function of depth is given in the following figure:
![]() |
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed, the velocity model used in the predictions may not be perfect and the epicentral parameters may be be off. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
hp c 0.02 n 3 lp c 0.08 n 3
![]() |
Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated. The time scale is relative to the first trace sample. |
![]() |
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to the waveforms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
The WUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows (The format is in the model96 format of Computer Programs in Seismology).
MODEL.01 Model after 8 iterations ISOTROPIC KGS FLAT EARTH 1-D CONSTANT VELOCITY LINE08 LINE09 LINE10 LINE11 H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS 1.9000 3.4065 2.0089 2.2150 0.302E-02 0.679E-02 0.00 0.00 1.00 1.00 6.1000 5.5445 3.2953 2.6089 0.349E-02 0.784E-02 0.00 0.00 1.00 1.00 13.0000 6.2708 3.7396 2.7812 0.212E-02 0.476E-02 0.00 0.00 1.00 1.00 19.0000 6.4075 3.7680 2.8223 0.111E-02 0.249E-02 0.00 0.00 1.00 1.00 0.0000 7.9000 4.6200 3.2760 0.164E-10 0.370E-10 0.00 0.00 1.00 1.00