The ANSS event ID is nm608540 and the event page is at https://earthquake.usgs.gov/earthquakes/eventpage/nm608540/executive.
2011/03/01 10:56:20 35.289 -92.340 2.4 3.2 Arkansas
USGS/SLU Moment Tensor Solution
ENS 2011/03/01 10:56:20:0 35.29 -92.34 2.4 3.2 Arkansas
Stations used:
AG.WHAR NM.X102 NM.X201 NM.X301
Filtering commands used:
hp c 0.02 n 3
lp c 0.25 n 3
Best Fitting Double Couple
Mo = 8.51e+20 dyne-cm
Mw = 3.22
Z = 2 km
Plane Strike Dip Rake
NP1 202 81 160
NP2 295 70 10
Principal Axes:
Axis Value Plunge Azimuth
T 8.51e+20 21 157
N 0.00e+00 68 358
P -8.51e+20 7 250
Moment Tensor: (dyne-cm)
Component Value
Mxx 5.25e+20
Mxy -5.43e+20
Mxz -2.24e+20
Myy -6.20e+20
Myz 2.12e+20
Mzz 9.50e+19
##############
#################-----
###################---------
###################-----------
####################--------------
####################----------------
----------##########------------------
------------------##--------------------
-------------------###------------------
--------------------#######---------------
-------------------###########------------
------------------##############----------
-----------------##################-------
-------------####################----
P ------------######################---
------------########################
------------########################
-----------#######################
--------############ #######
-------############ T ######
----############ ###
##############
Global CMT Convention Moment Tensor:
R T P
9.50e+19 -2.24e+20 -2.12e+20
-2.24e+20 5.25e+20 5.43e+20
-2.12e+20 5.43e+20 -6.20e+20
Details of the solution is found at
http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20110301105620/index.html
|
STK = 295
DIP = 70
RAKE = 10
MW = 3.22
HS = 2.0
The NDK file is 20110301105620.ndk The waveform inversion is preferred.
The following compares this source inversion to those provided by others. The purpose is to look for major differences and also to note slight differences that might be inherent to the processing procedure. For completeness the USGS/SLU solution is repeated from above.
USGS/SLU Moment Tensor Solution
ENS 2011/03/01 10:56:20:0 35.29 -92.34 2.4 3.2 Arkansas
Stations used:
AG.WHAR NM.X102 NM.X201 NM.X301
Filtering commands used:
hp c 0.02 n 3
lp c 0.25 n 3
Best Fitting Double Couple
Mo = 8.51e+20 dyne-cm
Mw = 3.22
Z = 2 km
Plane Strike Dip Rake
NP1 202 81 160
NP2 295 70 10
Principal Axes:
Axis Value Plunge Azimuth
T 8.51e+20 21 157
N 0.00e+00 68 358
P -8.51e+20 7 250
Moment Tensor: (dyne-cm)
Component Value
Mxx 5.25e+20
Mxy -5.43e+20
Mxz -2.24e+20
Myy -6.20e+20
Myz 2.12e+20
Mzz 9.50e+19
##############
#################-----
###################---------
###################-----------
####################--------------
####################----------------
----------##########------------------
------------------##--------------------
-------------------###------------------
--------------------#######---------------
-------------------###########------------
------------------##############----------
-----------------##################-------
-------------####################----
P ------------######################---
------------########################
------------########################
-----------#######################
--------############ #######
-------############ T ######
----############ ###
##############
Global CMT Convention Moment Tensor:
R T P
9.50e+19 -2.24e+20 -2.12e+20
-2.24e+20 5.25e+20 5.43e+20
-2.12e+20 5.43e+20 -6.20e+20
Details of the solution is found at
http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20110301105620/index.html
|
|
Given the availability of digital waveforms for determination of the moment tensor, this section documents the added processing leading to mLg, if appropriate to the region, and ML by application of the respective IASPEI formulae. As a research study, the linear distance term of the IASPEI formula for ML is adjusted to remove a linear distance trend in residuals to give a regionally defined ML. The defined ML uses horizontal component recordings, but the same procedure is applied to the vertical components since there may be some interest in vertical component ground motions. Residual plots versus distance may indicate interesting features of ground motion scaling in some distance ranges. A residual plot of the regionalized magnitude is given as a function of distance and azimuth, since data sets may transcend different wave propagation provinces.
Left: mLg computed using the IASPEI formula. Center: mLg residuals versus epicentral distance ; the values used for the trimmed mean magnitude estimate are indicated.
Right: residuals as a function of distance and azimuth.
Left: ML computed using the IASPEI formula for Horizontal components. Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
Left: ML computed using the IASPEI formula for Vertical components (research). Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
![]() |
The focal mechanism was determined using broadband seismic waveforms. The location of the event (star) and the stations used for (red) the waveform inversion are shown in the next figure.
|
|
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green's functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
hp c 0.02 n 3 lp c 0.25 n 3The results of this grid search are as follow:
DEPTH STK DIP RAKE MW FIT
WVFGRD96 0.5 300 45 15 3.14 0.7245
WVFGRD96 1.0 300 55 20 3.16 0.7695
WVFGRD96 2.0 295 70 10 3.22 0.8378
WVFGRD96 3.0 295 75 10 3.27 0.8376
WVFGRD96 4.0 290 75 5 3.32 0.8078
WVFGRD96 5.0 295 75 5 3.37 0.7722
WVFGRD96 6.0 295 70 5 3.40 0.7204
WVFGRD96 7.0 295 70 5 3.43 0.6741
WVFGRD96 8.0 295 70 5 3.46 0.6263
WVFGRD96 9.0 295 75 5 3.49 0.6131
WVFGRD96 10.0 295 75 5 3.53 0.6055
WVFGRD96 11.0 295 75 5 3.56 0.5843
WVFGRD96 12.0 295 75 5 3.59 0.5885
WVFGRD96 13.0 300 50 15 3.54 0.5863
WVFGRD96 14.0 135 90 30 3.62 0.5920
WVFGRD96 15.0 135 90 30 3.64 0.5969
WVFGRD96 16.0 320 90 -30 3.67 0.6018
WVFGRD96 17.0 320 90 -30 3.69 0.6109
WVFGRD96 18.0 140 90 30 3.71 0.6149
WVFGRD96 19.0 315 85 -25 3.74 0.6354
WVFGRD96 20.0 315 85 -25 3.77 0.6465
WVFGRD96 21.0 315 85 -25 3.79 0.6541
WVFGRD96 22.0 315 85 -25 3.81 0.6574
WVFGRD96 23.0 315 85 -20 3.85 0.6581
WVFGRD96 24.0 315 85 -20 3.86 0.6575
WVFGRD96 25.0 140 90 20 3.89 0.6402
WVFGRD96 26.0 140 90 20 3.91 0.6376
WVFGRD96 27.0 140 90 20 3.92 0.6394
WVFGRD96 28.0 315 85 -20 3.92 0.6527
WVFGRD96 29.0 315 85 -15 3.96 0.6521
The best solution is
WVFGRD96 2.0 295 70 10 3.22 0.8378
The mechanism corresponding to the best fit is
|
|
|
The best fit as a function of depth is given in the following figure:
|
|
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed, the velocity model used in the predictions may not be perfect and the epicentral parameters may be be off. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
hp c 0.02 n 3 lp c 0.25 n 3
|
| Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated. The time scale is relative to the first trace sample. |
|
| Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to the waveforms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
The CUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows (The format is in the model96 format of Computer Programs in Seismology).
MODEL.01 CUS Model with Q from simple gamma values ISOTROPIC KGS FLAT EARTH 1-D CONSTANT VELOCITY LINE08 LINE09 LINE10 LINE11 H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS 1.0000 5.0000 2.8900 2.5000 0.172E-02 0.387E-02 0.00 0.00 1.00 1.00 9.0000 6.1000 3.5200 2.7300 0.160E-02 0.363E-02 0.00 0.00 1.00 1.00 10.0000 6.4000 3.7000 2.8200 0.149E-02 0.336E-02 0.00 0.00 1.00 1.00 20.0000 6.7000 3.8700 2.9020 0.000E-04 0.000E-04 0.00 0.00 1.00 1.00 0.0000 8.1500 4.7000 3.3640 0.194E-02 0.431E-02 0.00 0.00 1.00 1.00