The ANSS event ID is ak010cbf7et6 and the event page is at https://earthquake.usgs.gov/earthquakes/eventpage/ak010cbf7et6/executive.
2010/09/25 12:06:00 62.854 -149.512 83.8 5.4 Alaska
USGS/SLU Moment Tensor Solution ENS 2010/09/25 12:06:00:0 62.85 -149.51 83.8 5.4 Alaska Stations used: AK.BMR AK.BPAW AK.BRLK AK.BWN AK.CCB AK.CHUM AK.CNP AK.DHY AK.DIV AK.DOT AK.EYAK AK.FIB AK.GLI AK.HDA AK.KLU AK.MCK AK.MDM AK.MLY AK.PAX AK.RC01 AK.RND AK.SAW AK.SCM AK.SKN AK.SSN AK.TRF AK.WRH IU.COLA Filtering commands used: hp c 0.02 n 3 lp c 0.10 n 3 Best Fitting Double Couple Mo = 1.43e+24 dyne-cm Mw = 5.37 Z = 89 km Plane Strike Dip Rake NP1 7 69 148 NP2 110 60 25 Principal Axes: Axis Value Plunge Azimuth T 1.43e+24 38 326 N 0.00e+00 52 157 P -1.43e+24 5 60 Moment Tensor: (dyne-cm) Component Value Mxx 2.59e+23 Mxy -1.03e+24 Mxz 5.05e+23 Myy -7.82e+23 Myz -5.05e+23 Mzz 5.23e+23 ##########---- ###############------- ###################--------- ####################---------- ######## ###########----------- ######### T ############---------- P ########## ############---------- -#########################-------------- --########################-------------- ----#######################--------------- ------#####################--------------- -------###################---------------- ----------################---------------- ------------#############--------------- ----------------########---------------- --------------------###-------------## ---------------------############### --------------------############## -----------------############# ---------------############# -----------########### ------######## Global CMT Convention Moment Tensor: R T P 5.23e+23 5.05e+23 5.05e+23 5.05e+23 2.59e+23 1.03e+24 5.05e+23 1.03e+24 -7.82e+23 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20100925120600/index.html |
STK = 110 DIP = 60 RAKE = 25 MW = 5.37 HS = 89.0
The NDK file is 20100925120600.ndk The waveform inversion is preferred.
The following compares this source inversion to those provided by others. The purpose is to look for major differences and also to note slight differences that might be inherent to the processing procedure. For completeness the USGS/SLU solution is repeated from above.
USGS/SLU Moment Tensor Solution ENS 2010/09/25 12:06:00:0 62.85 -149.51 83.8 5.4 Alaska Stations used: AK.BMR AK.BPAW AK.BRLK AK.BWN AK.CCB AK.CHUM AK.CNP AK.DHY AK.DIV AK.DOT AK.EYAK AK.FIB AK.GLI AK.HDA AK.KLU AK.MCK AK.MDM AK.MLY AK.PAX AK.RC01 AK.RND AK.SAW AK.SCM AK.SKN AK.SSN AK.TRF AK.WRH IU.COLA Filtering commands used: hp c 0.02 n 3 lp c 0.10 n 3 Best Fitting Double Couple Mo = 1.43e+24 dyne-cm Mw = 5.37 Z = 89 km Plane Strike Dip Rake NP1 7 69 148 NP2 110 60 25 Principal Axes: Axis Value Plunge Azimuth T 1.43e+24 38 326 N 0.00e+00 52 157 P -1.43e+24 5 60 Moment Tensor: (dyne-cm) Component Value Mxx 2.59e+23 Mxy -1.03e+24 Mxz 5.05e+23 Myy -7.82e+23 Myz -5.05e+23 Mzz 5.23e+23 ##########---- ###############------- ###################--------- ####################---------- ######## ###########----------- ######### T ############---------- P ########## ############---------- -#########################-------------- --########################-------------- ----#######################--------------- ------#####################--------------- -------###################---------------- ----------################---------------- ------------#############--------------- ----------------########---------------- --------------------###-------------## ---------------------############### --------------------############## -----------------############# ---------------############# -----------########### ------######## Global CMT Convention Moment Tensor: R T P 5.23e+23 5.05e+23 5.05e+23 5.05e+23 2.59e+23 1.03e+24 5.05e+23 1.03e+24 -7.82e+23 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20100925120600/index.html |
USGS Body-Wave Moment Tensor Solution 10/09/25 12:06:00.00 CENTRAL ALASKA Epicenter: 62.855 -149.467 MW 5.4 USGS MOMENT TENSOR SOLUTION Depth 89 No. of sta: 11 Moment Tensor; Scale 10**17 Nm Mrr= 0.53 Mtt= 0.29 Mpp=-0.82 Mrt= 0.57 Mrp= 0.87 Mtp= 1.18 Principal axes: T Val= 1.79 Plg=38 Azm=322 N -0.12 49 168 P -1.67 13 62 Best Double Couple:Mo=1.7*10**17 NP1:Strike= 7 Dip=74 Slip= 142 NP2: 109 53 20 ######- ###########------ #############-------- ################--------- ####### ########-------- ######## T ########-------- P - ######## ########-------- - -###################------------- ---#################------------- ----################------------- ------#############-------------- ---------##########-------------- -----------#######------------- ----------------#----------#### ----------------############# -------------############ ----------########### --------######### --##### |
![]() |
![]() |
![]() |
Given the availability of digital waveforms for determination of the moment tensor, this section documents the added processing leading to mLg, if appropriate to the region, and ML by application of the respective IASPEI formulae. As a research study, the linear distance term of the IASPEI formula for ML is adjusted to remove a linear distance trend in residuals to give a regionally defined ML. The defined ML uses horizontal component recordings, but the same procedure is applied to the vertical components since there may be some interest in vertical component ground motions. Residual plots versus distance may indicate interesting features of ground motion scaling in some distance ranges. A residual plot of the regionalized magnitude is given as a function of distance and azimuth, since data sets may transcend different wave propagation provinces.
Left: mLg computed using the IASPEI formula. Center: mLg residuals versus epicentral distance ; the values used for the trimmed mean magnitude estimate are indicated.
Right: residuals as a function of distance and azimuth.
Left: ML computed using the IASPEI formula for Horizontal components. Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
Left: ML computed using the IASPEI formula for Vertical components (research). Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
![]() |
The focal mechanism was determined using broadband seismic waveforms. The location of the event (star) and the stations used for (red) the waveform inversion are shown in the next figure.
![]() |
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green's functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
hp c 0.02 n 3 lp c 0.10 n 3The results of this grid search are as follow:
DEPTH STK DIP RAKE MW FIT WVFGRD96 60.0 105 50 20 5.30 0.4494 WVFGRD96 61.0 105 50 20 5.30 0.4586 WVFGRD96 62.0 110 50 25 5.31 0.4669 WVFGRD96 63.0 110 50 25 5.31 0.4761 WVFGRD96 64.0 110 50 25 5.32 0.4832 WVFGRD96 65.0 110 50 25 5.32 0.4916 WVFGRD96 66.0 110 50 25 5.32 0.4980 WVFGRD96 67.0 110 50 25 5.33 0.5032 WVFGRD96 68.0 110 50 25 5.33 0.5106 WVFGRD96 69.0 110 55 25 5.33 0.5163 WVFGRD96 70.0 110 55 25 5.33 0.5214 WVFGRD96 71.0 110 55 25 5.34 0.5289 WVFGRD96 72.0 110 55 25 5.34 0.5342 WVFGRD96 73.0 110 55 25 5.34 0.5383 WVFGRD96 74.0 110 55 25 5.34 0.5430 WVFGRD96 75.0 110 55 25 5.35 0.5466 WVFGRD96 76.0 110 55 25 5.35 0.5499 WVFGRD96 77.0 110 55 25 5.35 0.5531 WVFGRD96 78.0 110 55 25 5.35 0.5554 WVFGRD96 79.0 110 55 25 5.36 0.5568 WVFGRD96 80.0 110 55 25 5.36 0.5596 WVFGRD96 81.0 110 55 20 5.36 0.5597 WVFGRD96 82.0 110 55 20 5.37 0.5618 WVFGRD96 83.0 110 60 25 5.36 0.5629 WVFGRD96 84.0 110 60 25 5.36 0.5639 WVFGRD96 85.0 110 60 25 5.36 0.5661 WVFGRD96 86.0 110 60 25 5.36 0.5656 WVFGRD96 87.0 110 60 25 5.36 0.5672 WVFGRD96 88.0 110 60 25 5.37 0.5674 WVFGRD96 89.0 110 60 25 5.37 0.5698 WVFGRD96 90.0 110 60 25 5.37 0.5657 WVFGRD96 91.0 110 60 25 5.37 0.5675 WVFGRD96 92.0 110 60 25 5.37 0.5667 WVFGRD96 93.0 110 60 25 5.37 0.5671 WVFGRD96 94.0 110 60 25 5.37 0.5669 WVFGRD96 95.0 110 60 25 5.37 0.5681 WVFGRD96 96.0 110 60 25 5.37 0.5616 WVFGRD96 97.0 110 60 25 5.37 0.5635 WVFGRD96 98.0 110 60 20 5.38 0.5617 WVFGRD96 99.0 110 60 20 5.38 0.5615 WVFGRD96 100.0 110 60 20 5.38 0.5603 WVFGRD96 101.0 110 60 20 5.39 0.5583 WVFGRD96 102.0 110 60 20 5.39 0.5555 WVFGRD96 103.0 110 60 20 5.39 0.5560 WVFGRD96 104.0 110 60 20 5.39 0.5540 WVFGRD96 105.0 110 60 20 5.39 0.5528 WVFGRD96 106.0 110 60 20 5.39 0.5498 WVFGRD96 107.0 110 60 20 5.39 0.5481 WVFGRD96 108.0 110 60 20 5.39 0.5468 WVFGRD96 109.0 110 60 20 5.39 0.5449 WVFGRD96 110.0 110 60 20 5.39 0.5431 WVFGRD96 111.0 110 60 20 5.39 0.5398 WVFGRD96 112.0 110 60 20 5.39 0.5378 WVFGRD96 113.0 110 60 20 5.39 0.5361 WVFGRD96 114.0 110 65 20 5.39 0.5351 WVFGRD96 115.0 110 65 20 5.39 0.5313 WVFGRD96 116.0 110 65 20 5.39 0.5305 WVFGRD96 117.0 110 65 20 5.39 0.5287 WVFGRD96 118.0 110 65 20 5.39 0.5263 WVFGRD96 119.0 110 65 20 5.39 0.5255 WVFGRD96 120.0 110 65 20 5.39 0.5225 WVFGRD96 121.0 110 65 20 5.39 0.5209 WVFGRD96 122.0 110 65 20 5.39 0.5191 WVFGRD96 123.0 110 65 20 5.40 0.5165 WVFGRD96 124.0 110 65 20 5.40 0.5146 WVFGRD96 125.0 110 65 20 5.40 0.5130 WVFGRD96 126.0 110 65 20 5.40 0.5099 WVFGRD96 127.0 110 65 20 5.40 0.5097 WVFGRD96 128.0 110 65 20 5.40 0.5055 WVFGRD96 129.0 110 65 20 5.40 0.5050
The best solution is
WVFGRD96 89.0 110 60 25 5.37 0.5698
The mechanism corresponding to the best fit is
![]() |
|
The best fit as a function of depth is given in the following figure:
![]() |
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed, the velocity model used in the predictions may not be perfect and the epicentral parameters may be be off. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
hp c 0.02 n 3 lp c 0.10 n 3
![]() |
Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated. The time scale is relative to the first trace sample. |
![]() |
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to the waveforms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
The WUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows (The format is in the model96 format of Computer Programs in Seismology).
MODEL.01 Model after 8 iterations ISOTROPIC KGS FLAT EARTH 1-D CONSTANT VELOCITY LINE08 LINE09 LINE10 LINE11 H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS 1.9000 3.4065 2.0089 2.2150 0.302E-02 0.679E-02 0.00 0.00 1.00 1.00 6.1000 5.5445 3.2953 2.6089 0.349E-02 0.784E-02 0.00 0.00 1.00 1.00 13.0000 6.2708 3.7396 2.7812 0.212E-02 0.476E-02 0.00 0.00 1.00 1.00 19.0000 6.4075 3.7680 2.8223 0.111E-02 0.249E-02 0.00 0.00 1.00 1.00 0.0000 7.9000 4.6200 3.2760 0.164E-10 0.370E-10 0.00 0.00 1.00 1.00