The ANSS event ID is ak010c3azkox and the event page is at https://earthquake.usgs.gov/earthquakes/eventpage/ak010c3azkox/executive.
2010/09/20 21:24:24 61.115 -150.219 45.4 4.9 Alaska
USGS/SLU Moment Tensor Solution
ENS 2010/09/20 21:24:24:0 61.12 -150.22 45.4 4.9 Alaska
Stations used:
AK.BMR AK.BPAW AK.BRLK AK.CNP AK.CRQ AK.DHY AK.DIV AK.EYAK
AK.FID AK.GLI AK.PAX AK.RAG AK.RC01 AK.RND AK.SAW AK.SCM
AK.SKN AK.SSN AK.SWD AT.PMR AT.TTA
Filtering commands used:
hp c 0.02 n 3
lp c 0.08 n 3
Best Fitting Double Couple
Mo = 2.07e+23 dyne-cm
Mw = 4.81
Z = 48 km
Plane Strike Dip Rake
NP1 185 80 -85
NP2 338 11 -116
Principal Axes:
Axis Value Plunge Azimuth
T 2.07e+23 35 271
N 0.00e+00 5 4
P -2.07e+23 55 101
Moment Tensor: (dyne-cm)
Component Value
Mxx -2.54e+21
Mxy 1.13e+22
Mxz 2.00e+22
Myy 7.29e+22
Myz -1.92e+23
Mzz -7.04e+22
########--####
############-------###
##############-----------###
###############-------------##
################---------------###
#################-----------------##
#################-------------------##
##################-------------------###
##################--------------------##
###### ##########--------------------###
###### T ##########--------- ---------##
###### #########---------- P ---------##
##################---------- ---------##
#################---------------------##
#################---------------------##
################--------------------##
###############--------------------#
##############-------------------#
############-----------------#
###########----------------#
#########------------#
#####---------
Global CMT Convention Moment Tensor:
R T P
-7.04e+22 2.00e+22 1.92e+23
2.00e+22 -2.54e+21 -1.13e+22
1.92e+23 -1.13e+22 7.29e+22
Details of the solution is found at
http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20100920212424/index.html
|
STK = 185
DIP = 80
RAKE = -85
MW = 4.81
HS = 48.0
The NDK file is 20100920212424.ndk The waveform inversion is preferred.
The following compares this source inversion to those provided by others. The purpose is to look for major differences and also to note slight differences that might be inherent to the processing procedure. For completeness the USGS/SLU solution is repeated from above.
USGS/SLU Moment Tensor Solution
ENS 2010/09/20 21:24:24:0 61.12 -150.22 45.4 4.9 Alaska
Stations used:
AK.BMR AK.BPAW AK.BRLK AK.CNP AK.CRQ AK.DHY AK.DIV AK.EYAK
AK.FID AK.GLI AK.PAX AK.RAG AK.RC01 AK.RND AK.SAW AK.SCM
AK.SKN AK.SSN AK.SWD AT.PMR AT.TTA
Filtering commands used:
hp c 0.02 n 3
lp c 0.08 n 3
Best Fitting Double Couple
Mo = 2.07e+23 dyne-cm
Mw = 4.81
Z = 48 km
Plane Strike Dip Rake
NP1 185 80 -85
NP2 338 11 -116
Principal Axes:
Axis Value Plunge Azimuth
T 2.07e+23 35 271
N 0.00e+00 5 4
P -2.07e+23 55 101
Moment Tensor: (dyne-cm)
Component Value
Mxx -2.54e+21
Mxy 1.13e+22
Mxz 2.00e+22
Myy 7.29e+22
Myz -1.92e+23
Mzz -7.04e+22
########--####
############-------###
##############-----------###
###############-------------##
################---------------###
#################-----------------##
#################-------------------##
##################-------------------###
##################--------------------##
###### ##########--------------------###
###### T ##########--------- ---------##
###### #########---------- P ---------##
##################---------- ---------##
#################---------------------##
#################---------------------##
################--------------------##
###############--------------------#
##############-------------------#
############-----------------#
###########----------------#
#########------------#
#####---------
Global CMT Convention Moment Tensor:
R T P
-7.04e+22 2.00e+22 1.92e+23
2.00e+22 -2.54e+21 -1.13e+22
1.92e+23 -1.13e+22 7.29e+22
Details of the solution is found at
http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20100920212424/index.html
|
|
Given the availability of digital waveforms for determination of the moment tensor, this section documents the added processing leading to mLg, if appropriate to the region, and ML by application of the respective IASPEI formulae. As a research study, the linear distance term of the IASPEI formula for ML is adjusted to remove a linear distance trend in residuals to give a regionally defined ML. The defined ML uses horizontal component recordings, but the same procedure is applied to the vertical components since there may be some interest in vertical component ground motions. Residual plots versus distance may indicate interesting features of ground motion scaling in some distance ranges. A residual plot of the regionalized magnitude is given as a function of distance and azimuth, since data sets may transcend different wave propagation provinces.
Left: ML computed using the IASPEI formula for Horizontal components. Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
Left: ML computed using the IASPEI formula for Vertical components (research). Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
![]() |
The focal mechanism was determined using broadband seismic waveforms. The location of the event (star) and the stations used for (red) the waveform inversion are shown in the next figure.
|
|
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green's functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
hp c 0.02 n 3 lp c 0.08 n 3The results of this grid search are as follow:
DEPTH STK DIP RAKE MW FIT
WVFGRD96 20.0 25 85 50 4.41 0.4667
WVFGRD96 21.0 200 90 -50 4.43 0.4786
WVFGRD96 22.0 25 85 50 4.44 0.4931
WVFGRD96 23.0 25 85 50 4.46 0.5058
WVFGRD96 24.0 205 90 -50 4.47 0.5178
WVFGRD96 25.0 25 90 55 4.48 0.5304
WVFGRD96 26.0 25 90 55 4.49 0.5421
WVFGRD96 27.0 200 85 -55 4.50 0.5532
WVFGRD96 28.0 10 90 60 4.51 0.5645
WVFGRD96 29.0 10 90 60 4.53 0.5772
WVFGRD96 30.0 10 90 60 4.54 0.5890
WVFGRD96 31.0 10 90 65 4.55 0.5999
WVFGRD96 32.0 10 90 65 4.56 0.6098
WVFGRD96 33.0 185 85 -65 4.57 0.6247
WVFGRD96 34.0 190 85 -70 4.58 0.6341
WVFGRD96 35.0 185 80 -70 4.58 0.6434
WVFGRD96 36.0 185 80 -70 4.59 0.6524
WVFGRD96 37.0 185 80 -70 4.60 0.6599
WVFGRD96 38.0 185 80 -70 4.60 0.6667
WVFGRD96 39.0 185 80 -70 4.61 0.6703
WVFGRD96 40.0 185 80 -80 4.75 0.6652
WVFGRD96 41.0 185 80 -80 4.76 0.6773
WVFGRD96 42.0 185 80 -80 4.77 0.6868
WVFGRD96 43.0 185 80 -80 4.78 0.6952
WVFGRD96 44.0 185 80 -80 4.78 0.7011
WVFGRD96 45.0 185 80 -80 4.79 0.7071
WVFGRD96 46.0 185 80 -80 4.80 0.7105
WVFGRD96 47.0 185 80 -80 4.80 0.7139
WVFGRD96 48.0 185 80 -85 4.81 0.7159
WVFGRD96 49.0 -10 10 -105 4.82 0.7151
WVFGRD96 50.0 -10 10 -105 4.83 0.7153
WVFGRD96 51.0 -10 10 -105 4.83 0.7143
WVFGRD96 52.0 -10 10 -105 4.84 0.7121
WVFGRD96 53.0 -10 10 -105 4.84 0.7092
WVFGRD96 54.0 50 15 -50 4.86 0.7049
WVFGRD96 55.0 50 15 -50 4.87 0.7032
WVFGRD96 56.0 50 15 -50 4.87 0.6999
WVFGRD96 57.0 50 15 -50 4.88 0.6959
WVFGRD96 58.0 50 15 -50 4.88 0.6916
WVFGRD96 59.0 50 15 -50 4.88 0.6856
The best solution is
WVFGRD96 48.0 185 80 -85 4.81 0.7159
The mechanism corresponding to the best fit is
|
|
|
The best fit as a function of depth is given in the following figure:
|
|
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed, the velocity model used in the predictions may not be perfect and the epicentral parameters may be be off. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
hp c 0.02 n 3 lp c 0.08 n 3
|
| Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated. The time scale is relative to the first trace sample. |
|
| Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to the waveforms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
The WUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows (The format is in the model96 format of Computer Programs in Seismology).
MODEL.01
Model after 8 iterations
ISOTROPIC
KGS
FLAT EARTH
1-D
CONSTANT VELOCITY
LINE08
LINE09
LINE10
LINE11
H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS
1.9000 3.4065 2.0089 2.2150 0.302E-02 0.679E-02 0.00 0.00 1.00 1.00
6.1000 5.5445 3.2953 2.6089 0.349E-02 0.784E-02 0.00 0.00 1.00 1.00
13.0000 6.2708 3.7396 2.7812 0.212E-02 0.476E-02 0.00 0.00 1.00 1.00
19.0000 6.4075 3.7680 2.8223 0.111E-02 0.249E-02 0.00 0.00 1.00 1.00
0.0000 7.9000 4.6200 3.2760 0.164E-10 0.370E-10 0.00 0.00 1.00 1.00