The ANSS event ID is ak010c3azkox and the event page is at https://earthquake.usgs.gov/earthquakes/eventpage/ak010c3azkox/executive.
2010/09/20 21:24:24 61.115 -150.219 45.4 4.9 Alaska
USGS/SLU Moment Tensor Solution ENS 2010/09/20 21:24:24:0 61.12 -150.22 45.4 4.9 Alaska Stations used: AK.BMR AK.BPAW AK.BRLK AK.CNP AK.CRQ AK.DHY AK.DIV AK.EYAK AK.FID AK.GLI AK.PAX AK.RAG AK.RC01 AK.RND AK.SAW AK.SCM AK.SKN AK.SSN AK.SWD AT.PMR AT.TTA Filtering commands used: hp c 0.02 n 3 lp c 0.08 n 3 Best Fitting Double Couple Mo = 2.07e+23 dyne-cm Mw = 4.81 Z = 48 km Plane Strike Dip Rake NP1 185 80 -85 NP2 338 11 -116 Principal Axes: Axis Value Plunge Azimuth T 2.07e+23 35 271 N 0.00e+00 5 4 P -2.07e+23 55 101 Moment Tensor: (dyne-cm) Component Value Mxx -2.54e+21 Mxy 1.13e+22 Mxz 2.00e+22 Myy 7.29e+22 Myz -1.92e+23 Mzz -7.04e+22 ########--#### ############-------### ##############-----------### ###############-------------## ################---------------### #################-----------------## #################-------------------## ##################-------------------### ##################--------------------## ###### ##########--------------------### ###### T ##########--------- ---------## ###### #########---------- P ---------## ##################---------- ---------## #################---------------------## #################---------------------## ################--------------------## ###############--------------------# ##############-------------------# ############-----------------# ###########----------------# #########------------# #####--------- Global CMT Convention Moment Tensor: R T P -7.04e+22 2.00e+22 1.92e+23 2.00e+22 -2.54e+21 -1.13e+22 1.92e+23 -1.13e+22 7.29e+22 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20100920212424/index.html |
STK = 185 DIP = 80 RAKE = -85 MW = 4.81 HS = 48.0
The NDK file is 20100920212424.ndk The waveform inversion is preferred.
The following compares this source inversion to those provided by others. The purpose is to look for major differences and also to note slight differences that might be inherent to the processing procedure. For completeness the USGS/SLU solution is repeated from above.
USGS/SLU Moment Tensor Solution ENS 2010/09/20 21:24:24:0 61.12 -150.22 45.4 4.9 Alaska Stations used: AK.BMR AK.BPAW AK.BRLK AK.CNP AK.CRQ AK.DHY AK.DIV AK.EYAK AK.FID AK.GLI AK.PAX AK.RAG AK.RC01 AK.RND AK.SAW AK.SCM AK.SKN AK.SSN AK.SWD AT.PMR AT.TTA Filtering commands used: hp c 0.02 n 3 lp c 0.08 n 3 Best Fitting Double Couple Mo = 2.07e+23 dyne-cm Mw = 4.81 Z = 48 km Plane Strike Dip Rake NP1 185 80 -85 NP2 338 11 -116 Principal Axes: Axis Value Plunge Azimuth T 2.07e+23 35 271 N 0.00e+00 5 4 P -2.07e+23 55 101 Moment Tensor: (dyne-cm) Component Value Mxx -2.54e+21 Mxy 1.13e+22 Mxz 2.00e+22 Myy 7.29e+22 Myz -1.92e+23 Mzz -7.04e+22 ########--#### ############-------### ##############-----------### ###############-------------## ################---------------### #################-----------------## #################-------------------## ##################-------------------### ##################--------------------## ###### ##########--------------------### ###### T ##########--------- ---------## ###### #########---------- P ---------## ##################---------- ---------## #################---------------------## #################---------------------## ################--------------------## ###############--------------------# ##############-------------------# ############-----------------# ###########----------------# #########------------# #####--------- Global CMT Convention Moment Tensor: R T P -7.04e+22 2.00e+22 1.92e+23 2.00e+22 -2.54e+21 -1.13e+22 1.92e+23 -1.13e+22 7.29e+22 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20100920212424/index.html |
|
Given the availability of digital waveforms for determination of the moment tensor, this section documents the added processing leading to mLg, if appropriate to the region, and ML by application of the respective IASPEI formulae. As a research study, the linear distance term of the IASPEI formula for ML is adjusted to remove a linear distance trend in residuals to give a regionally defined ML. The defined ML uses horizontal component recordings, but the same procedure is applied to the vertical components since there may be some interest in vertical component ground motions. Residual plots versus distance may indicate interesting features of ground motion scaling in some distance ranges. A residual plot of the regionalized magnitude is given as a function of distance and azimuth, since data sets may transcend different wave propagation provinces.
Left: ML computed using the IASPEI formula for Horizontal components. Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
Left: ML computed using the IASPEI formula for Vertical components (research). Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
![]() |
The focal mechanism was determined using broadband seismic waveforms. The location of the event (star) and the stations used for (red) the waveform inversion are shown in the next figure.
![]() |
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green's functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
hp c 0.02 n 3 lp c 0.08 n 3The results of this grid search are as follow:
DEPTH STK DIP RAKE MW FIT WVFGRD96 20.0 25 85 50 4.41 0.4667 WVFGRD96 21.0 200 90 -50 4.43 0.4786 WVFGRD96 22.0 25 85 50 4.44 0.4931 WVFGRD96 23.0 25 85 50 4.46 0.5058 WVFGRD96 24.0 205 90 -50 4.47 0.5178 WVFGRD96 25.0 25 90 55 4.48 0.5304 WVFGRD96 26.0 25 90 55 4.49 0.5421 WVFGRD96 27.0 200 85 -55 4.50 0.5532 WVFGRD96 28.0 10 90 60 4.51 0.5645 WVFGRD96 29.0 10 90 60 4.53 0.5772 WVFGRD96 30.0 10 90 60 4.54 0.5890 WVFGRD96 31.0 10 90 65 4.55 0.5999 WVFGRD96 32.0 10 90 65 4.56 0.6098 WVFGRD96 33.0 185 85 -65 4.57 0.6247 WVFGRD96 34.0 190 85 -70 4.58 0.6341 WVFGRD96 35.0 185 80 -70 4.58 0.6434 WVFGRD96 36.0 185 80 -70 4.59 0.6524 WVFGRD96 37.0 185 80 -70 4.60 0.6599 WVFGRD96 38.0 185 80 -70 4.60 0.6667 WVFGRD96 39.0 185 80 -70 4.61 0.6703 WVFGRD96 40.0 185 80 -80 4.75 0.6652 WVFGRD96 41.0 185 80 -80 4.76 0.6773 WVFGRD96 42.0 185 80 -80 4.77 0.6868 WVFGRD96 43.0 185 80 -80 4.78 0.6952 WVFGRD96 44.0 185 80 -80 4.78 0.7011 WVFGRD96 45.0 185 80 -80 4.79 0.7071 WVFGRD96 46.0 185 80 -80 4.80 0.7105 WVFGRD96 47.0 185 80 -80 4.80 0.7139 WVFGRD96 48.0 185 80 -85 4.81 0.7159 WVFGRD96 49.0 -10 10 -105 4.82 0.7151 WVFGRD96 50.0 -10 10 -105 4.83 0.7153 WVFGRD96 51.0 -10 10 -105 4.83 0.7143 WVFGRD96 52.0 -10 10 -105 4.84 0.7121 WVFGRD96 53.0 -10 10 -105 4.84 0.7092 WVFGRD96 54.0 50 15 -50 4.86 0.7049 WVFGRD96 55.0 50 15 -50 4.87 0.7032 WVFGRD96 56.0 50 15 -50 4.87 0.6999 WVFGRD96 57.0 50 15 -50 4.88 0.6959 WVFGRD96 58.0 50 15 -50 4.88 0.6916 WVFGRD96 59.0 50 15 -50 4.88 0.6856
The best solution is
WVFGRD96 48.0 185 80 -85 4.81 0.7159
The mechanism corresponding to the best fit is
![]() |
|
The best fit as a function of depth is given in the following figure:
![]() |
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed, the velocity model used in the predictions may not be perfect and the epicentral parameters may be be off. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
hp c 0.02 n 3 lp c 0.08 n 3
![]() |
Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated. The time scale is relative to the first trace sample. |
![]() |
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to the waveforms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
The WUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows (The format is in the model96 format of Computer Programs in Seismology).
MODEL.01 Model after 8 iterations ISOTROPIC KGS FLAT EARTH 1-D CONSTANT VELOCITY LINE08 LINE09 LINE10 LINE11 H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS 1.9000 3.4065 2.0089 2.2150 0.302E-02 0.679E-02 0.00 0.00 1.00 1.00 6.1000 5.5445 3.2953 2.6089 0.349E-02 0.784E-02 0.00 0.00 1.00 1.00 13.0000 6.2708 3.7396 2.7812 0.212E-02 0.476E-02 0.00 0.00 1.00 1.00 19.0000 6.4075 3.7680 2.8223 0.111E-02 0.249E-02 0.00 0.00 1.00 1.00 0.0000 7.9000 4.6200 3.2760 0.164E-10 0.370E-10 0.00 0.00 1.00 1.00