The ANSS event ID is ak0104ljdsz2 and the event page is at https://earthquake.usgs.gov/earthquakes/eventpage/ak0104ljdsz2/executive.
2010/04/10 09:47:57 61.597 -146.737 43.6 4.5 Alaska
USGS/SLU Moment Tensor Solution ENS 2010/04/10 09:47:57:0 61.60 -146.74 43.6 4.5 Alaska Stations used: AK.BMR AK.BRLK AK.CCB AK.DDM AK.DHY AK.DIV AK.DOT AK.EYAK AK.KLU AK.KTH AK.MCK AK.MDM AK.PAX AK.PPLA AK.RAG AK.RC01 AK.RND AK.SCM AK.SSN AK.TRF AK.WRH AT.PMR IU.COLA XZ.BAGL XZ.BARK XZ.BARN XZ.GOAT XZ.ISLE XZ.KHIT XZ.MESA XZ.RKAV XZ.VRDI Filtering commands used: cut o DIST/3.3 -30 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.05 n 3 Best Fitting Double Couple Mo = 6.84e+22 dyne-cm Mw = 4.49 Z = 51 km Plane Strike Dip Rake NP1 35 70 -75 NP2 177 25 -125 Principal Axes: Axis Value Plunge Azimuth T 6.84e+22 24 113 N 0.00e+00 14 210 P -6.84e+22 62 328 Moment Tensor: (dyne-cm) Component Value Mxx -1.66e+21 Mxy -1.43e+22 Mxz -3.40e+22 Myy 4.41e+22 Myz 3.80e+22 Mzz -4.25e+22 ###----------- ####------------------ ####----------------------## ####-----------------------### ####------------------------###### ####-------------------------####### #####--------- ------------######### #####---------- P -----------########### #####---------- -----------########### #####------------------------############# #####-----------------------############## #####----------------------############### #####--------------------################# #####------------------########## #### #####----------------############ T #### #####--------------############# ### #####-----------#################### #####--------##################### ####-----##################### ############################ ----################## ----########## Global CMT Convention Moment Tensor: R T P -4.25e+22 -3.40e+22 -3.80e+22 -3.40e+22 -1.66e+21 1.43e+22 -3.80e+22 1.43e+22 4.41e+22 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20100410094757/index.html |
STK = 35 DIP = 70 RAKE = -75 MW = 4.49 HS = 51.0
The NDK file is 20100410094757.ndk The waveform inversion is preferred.
Given the availability of digital waveforms for determination of the moment tensor, this section documents the added processing leading to mLg, if appropriate to the region, and ML by application of the respective IASPEI formulae. As a research study, the linear distance term of the IASPEI formula for ML is adjusted to remove a linear distance trend in residuals to give a regionally defined ML. The defined ML uses horizontal component recordings, but the same procedure is applied to the vertical components since there may be some interest in vertical component ground motions. Residual plots versus distance may indicate interesting features of ground motion scaling in some distance ranges. A residual plot of the regionalized magnitude is given as a function of distance and azimuth, since data sets may transcend different wave propagation provinces.
Left: ML computed using the IASPEI formula for Horizontal components. Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
Left: ML computed using the IASPEI formula for Vertical components (research). Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
![]() |
The focal mechanism was determined using broadband seismic waveforms. The location of the event (star) and the stations used for (red) the waveform inversion are shown in the next figure.
![]() |
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green's functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
cut o DIST/3.3 -30 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.05 n 3The results of this grid search are as follow:
DEPTH STK DIP RAKE MW FIT WVFGRD96 1.0 40 40 -80 3.81 0.1852 WVFGRD96 2.0 35 40 -90 3.91 0.2360 WVFGRD96 3.0 35 40 -90 3.98 0.2559 WVFGRD96 4.0 40 40 -85 4.02 0.2620 WVFGRD96 5.0 40 40 -85 4.04 0.2513 WVFGRD96 6.0 65 45 -60 4.04 0.2289 WVFGRD96 7.0 70 45 -55 4.04 0.2109 WVFGRD96 8.0 60 40 -70 4.09 0.2278 WVFGRD96 9.0 30 90 -70 4.03 0.2120 WVFGRD96 10.0 215 85 70 4.04 0.2298 WVFGRD96 11.0 30 90 -65 4.04 0.2463 WVFGRD96 12.0 30 90 -65 4.05 0.2612 WVFGRD96 13.0 210 90 65 4.05 0.2754 WVFGRD96 14.0 30 90 -65 4.06 0.2893 WVFGRD96 15.0 30 90 -65 4.07 0.3019 WVFGRD96 16.0 30 90 -65 4.07 0.3139 WVFGRD96 17.0 210 90 65 4.08 0.3254 WVFGRD96 18.0 30 90 -65 4.09 0.3361 WVFGRD96 19.0 210 90 65 4.10 0.3461 WVFGRD96 20.0 20 85 -65 4.12 0.3560 WVFGRD96 21.0 210 90 65 4.12 0.3638 WVFGRD96 22.0 25 85 -65 4.13 0.3742 WVFGRD96 23.0 25 85 -65 4.14 0.3832 WVFGRD96 24.0 25 85 -65 4.15 0.3918 WVFGRD96 25.0 20 80 -65 4.17 0.4004 WVFGRD96 26.0 20 80 -70 4.17 0.4091 WVFGRD96 27.0 20 80 -70 4.18 0.4178 WVFGRD96 28.0 20 80 -70 4.19 0.4258 WVFGRD96 29.0 25 80 -70 4.20 0.4336 WVFGRD96 30.0 20 75 -70 4.22 0.4415 WVFGRD96 31.0 25 75 -70 4.22 0.4499 WVFGRD96 32.0 25 75 -70 4.23 0.4579 WVFGRD96 33.0 25 75 -70 4.24 0.4653 WVFGRD96 34.0 25 75 -70 4.24 0.4718 WVFGRD96 35.0 30 75 -70 4.25 0.4775 WVFGRD96 36.0 25 70 -70 4.27 0.4834 WVFGRD96 37.0 25 70 -70 4.28 0.4888 WVFGRD96 38.0 25 70 -70 4.28 0.4935 WVFGRD96 39.0 30 70 -70 4.29 0.4973 WVFGRD96 40.0 30 75 -75 4.41 0.4925 WVFGRD96 41.0 30 75 -75 4.42 0.4966 WVFGRD96 42.0 30 75 -75 4.42 0.4997 WVFGRD96 43.0 35 75 -75 4.43 0.5026 WVFGRD96 44.0 30 70 -75 4.45 0.5064 WVFGRD96 45.0 30 70 -75 4.45 0.5097 WVFGRD96 46.0 30 70 -80 4.46 0.5125 WVFGRD96 47.0 30 70 -80 4.47 0.5148 WVFGRD96 48.0 35 70 -75 4.47 0.5166 WVFGRD96 49.0 30 70 -80 4.48 0.5179 WVFGRD96 50.0 35 70 -75 4.48 0.5189 WVFGRD96 51.0 35 70 -75 4.49 0.5192 WVFGRD96 52.0 35 70 -75 4.49 0.5190 WVFGRD96 53.0 35 70 -75 4.50 0.5187 WVFGRD96 54.0 35 70 -75 4.50 0.5178 WVFGRD96 55.0 35 70 -75 4.51 0.5165 WVFGRD96 56.0 35 70 -75 4.51 0.5146 WVFGRD96 57.0 35 70 -75 4.52 0.5126 WVFGRD96 58.0 35 70 -75 4.52 0.5103 WVFGRD96 59.0 35 70 -75 4.52 0.5075
The best solution is
WVFGRD96 51.0 35 70 -75 4.49 0.5192
The mechanism corresponding to the best fit is
![]() |
|
The best fit as a function of depth is given in the following figure:
![]() |
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed, the velocity model used in the predictions may not be perfect and the epicentral parameters may be be off. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
cut o DIST/3.3 -30 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.05 n 3
![]() |
Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated. The time scale is relative to the first trace sample. |
![]() |
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to the waveforms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
The WUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows (The format is in the model96 format of Computer Programs in Seismology).
MODEL.01 Model after 8 iterations ISOTROPIC KGS FLAT EARTH 1-D CONSTANT VELOCITY LINE08 LINE09 LINE10 LINE11 H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS 1.9000 3.4065 2.0089 2.2150 0.302E-02 0.679E-02 0.00 0.00 1.00 1.00 6.1000 5.5445 3.2953 2.6089 0.349E-02 0.784E-02 0.00 0.00 1.00 1.00 13.0000 6.2708 3.7396 2.7812 0.212E-02 0.476E-02 0.00 0.00 1.00 1.00 19.0000 6.4075 3.7680 2.8223 0.111E-02 0.249E-02 0.00 0.00 1.00 1.00 0.0000 7.9000 4.6200 3.2760 0.164E-10 0.370E-10 0.00 0.00 1.00 1.00