The ANSS event ID is ak009ambz3p6 and the event page is at https://earthquake.usgs.gov/earthquakes/eventpage/ak009ambz3p6/executive.
2009/08/19 18:19:27 61.228 -150.858 66.4 5.1 Alaska
USGS/SLU Moment Tensor Solution ENS 2009/08/19 18:19:27:0 61.23 -150.86 66.4 5.1 Alaska Stations used: AK.BMR AK.CAST AK.CHUM AK.DIV AK.EYAK AK.MCK AK.PPLA AK.SAW AK.SSN AK.TRF AT.PMR AT.SVW2 IU.COLA Filtering commands used: cut o DIST/3.3 -40 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.07 n 3 Best Fitting Double Couple Mo = 2.82e+23 dyne-cm Mw = 4.90 Z = 66 km Plane Strike Dip Rake NP1 337 83 119 NP2 80 30 15 Principal Axes: Axis Value Plunge Azimuth T 2.82e+23 45 276 N 0.00e+00 29 153 P -2.82e+23 31 43 Moment Tensor: (dyne-cm) Component Value Mxx -1.08e+23 Mxy -1.17e+23 Mxz -7.69e+22 Myy 4.47e+22 Myz -2.26e+23 Mzz 6.32e+22 -------------- ####------------------ ########-------------------- ##########-------------------- #############------------ ------ ###############----------- P ------- #################---------- -------- ###################--------------------- ####################-------------------- ######## ###########-------------------# ######## T ############------------------# ######## ############-----------------## ########################----------------## ########################--------------## -########################-----------#### --######################----------#### ---#####################------###### -----##################----####### -------#############--######## ---------------------####### -------------------### -------------- Global CMT Convention Moment Tensor: R T P 6.32e+22 -7.69e+22 2.26e+23 -7.69e+22 -1.08e+23 1.17e+23 2.26e+23 1.17e+23 4.47e+22 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20090819181927/index.html |
STK = 80 DIP = 30 RAKE = 15 MW = 4.90 HS = 66.0
The NDK file is 20090819181927.ndk The waveform inversion is preferred.
The following compares this source inversion to those provided by others. The purpose is to look for major differences and also to note slight differences that might be inherent to the processing procedure. For completeness the USGS/SLU solution is repeated from above.
USGS/SLU Moment Tensor Solution ENS 2009/08/19 18:19:27:0 61.23 -150.86 66.4 5.1 Alaska Stations used: AK.BMR AK.CAST AK.CHUM AK.DIV AK.EYAK AK.MCK AK.PPLA AK.SAW AK.SSN AK.TRF AT.PMR AT.SVW2 IU.COLA Filtering commands used: cut o DIST/3.3 -40 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.07 n 3 Best Fitting Double Couple Mo = 2.82e+23 dyne-cm Mw = 4.90 Z = 66 km Plane Strike Dip Rake NP1 337 83 119 NP2 80 30 15 Principal Axes: Axis Value Plunge Azimuth T 2.82e+23 45 276 N 0.00e+00 29 153 P -2.82e+23 31 43 Moment Tensor: (dyne-cm) Component Value Mxx -1.08e+23 Mxy -1.17e+23 Mxz -7.69e+22 Myy 4.47e+22 Myz -2.26e+23 Mzz 6.32e+22 -------------- ####------------------ ########-------------------- ##########-------------------- #############------------ ------ ###############----------- P ------- #################---------- -------- ###################--------------------- ####################-------------------- ######## ###########-------------------# ######## T ############------------------# ######## ############-----------------## ########################----------------## ########################--------------## -########################-----------#### --######################----------#### ---#####################------###### -----##################----####### -------#############--######## ---------------------####### -------------------### -------------- Global CMT Convention Moment Tensor: R T P 6.32e+22 -7.69e+22 2.26e+23 -7.69e+22 -1.08e+23 1.17e+23 2.26e+23 1.17e+23 4.47e+22 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20090819181927/index.html |
Moment tensor inversion summary for event 2009/08/19 18:19 Date: 2009/08/19 Time: 18:19 (UTC) Region: Cook Inlet Region of Alaska Mw=5.1 Location: Lat. 61.2286; Lon. -150.8254; Depth 70 km (Best-fitting depth from moment tensor inversion) Solution quality: good; Number of stations = 7 Best Double Couple: strike dip rake Plane 1: 174.0 87.0 -104.0 Plane 2: 72.3 14.3 -12.1 Moment Tensor Parameters: Mo = 4.23092e+23 dyn-cm Mxx = -0.19; Mxy = -0.96; Mxz = -0.48 Myy = 0.62; Myz = -4.05; Mzz = -0.43 Principal Axes: value azimuth plunge T: 4.22 277.03 40.44 N: 0.01 174.77 14.00 P: -4.23 69.71 46.19 |
Given the availability of digital waveforms for determination of the moment tensor, this section documents the added processing leading to mLg, if appropriate to the region, and ML by application of the respective IASPEI formulae. As a research study, the linear distance term of the IASPEI formula for ML is adjusted to remove a linear distance trend in residuals to give a regionally defined ML. The defined ML uses horizontal component recordings, but the same procedure is applied to the vertical components since there may be some interest in vertical component ground motions. Residual plots versus distance may indicate interesting features of ground motion scaling in some distance ranges. A residual plot of the regionalized magnitude is given as a function of distance and azimuth, since data sets may transcend different wave propagation provinces.
Left: ML computed using the IASPEI formula for Horizontal components. Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
Left: ML computed using the IASPEI formula for Vertical components (research). Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
![]() |
The focal mechanism was determined using broadband seismic waveforms. The location of the event (star) and the stations used for (red) the waveform inversion are shown in the next figure.
![]() |
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green's functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
cut o DIST/3.3 -40 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.07 n 3The results of this grid search are as follow:
DEPTH STK DIP RAKE MW FIT WVFGRD96 2.0 320 45 -80 4.13 0.2620 WVFGRD96 4.0 330 75 -65 4.18 0.2239 WVFGRD96 6.0 325 75 -60 4.19 0.2617 WVFGRD96 8.0 325 75 -60 4.26 0.2805 WVFGRD96 10.0 230 35 -25 4.28 0.2987 WVFGRD96 12.0 240 40 0 4.29 0.3179 WVFGRD96 14.0 250 45 30 4.33 0.3392 WVFGRD96 16.0 255 40 30 4.35 0.3560 WVFGRD96 18.0 260 40 30 4.36 0.3700 WVFGRD96 20.0 260 40 30 4.39 0.3822 WVFGRD96 22.0 260 40 25 4.41 0.3917 WVFGRD96 24.0 260 40 25 4.43 0.4003 WVFGRD96 26.0 260 40 25 4.45 0.4071 WVFGRD96 28.0 255 40 20 4.47 0.4118 WVFGRD96 30.0 255 45 20 4.49 0.4142 WVFGRD96 32.0 50 55 0 4.55 0.4347 WVFGRD96 34.0 55 50 0 4.56 0.4602 WVFGRD96 36.0 55 50 0 4.59 0.4824 WVFGRD96 38.0 55 50 0 4.61 0.5016 WVFGRD96 40.0 55 35 0 4.72 0.5168 WVFGRD96 42.0 60 35 5 4.74 0.5430 WVFGRD96 44.0 65 35 5 4.76 0.5646 WVFGRD96 46.0 65 35 5 4.77 0.5818 WVFGRD96 48.0 60 35 5 4.79 0.6014 WVFGRD96 50.0 65 35 5 4.81 0.6240 WVFGRD96 52.0 70 30 5 4.83 0.6449 WVFGRD96 54.0 70 30 10 4.84 0.6640 WVFGRD96 56.0 70 30 10 4.85 0.6787 WVFGRD96 58.0 75 30 10 4.86 0.6915 WVFGRD96 60.0 75 30 10 4.87 0.7008 WVFGRD96 62.0 75 30 10 4.88 0.7073 WVFGRD96 64.0 75 30 15 4.89 0.7085 WVFGRD96 66.0 80 30 15 4.90 0.7102 WVFGRD96 68.0 85 25 5 4.92 0.7085 WVFGRD96 70.0 85 25 5 4.93 0.7048 WVFGRD96 72.0 85 25 5 4.94 0.7014 WVFGRD96 74.0 85 25 5 4.94 0.6939 WVFGRD96 76.0 85 25 5 4.94 0.6858 WVFGRD96 78.0 85 25 5 4.95 0.6759 WVFGRD96 80.0 90 25 5 4.96 0.6650 WVFGRD96 82.0 90 25 5 4.96 0.6542 WVFGRD96 84.0 90 25 5 4.96 0.6429 WVFGRD96 86.0 90 25 5 4.97 0.6304 WVFGRD96 88.0 95 25 10 4.96 0.6171 WVFGRD96 90.0 95 25 10 4.97 0.6037 WVFGRD96 92.0 95 25 10 4.97 0.5898 WVFGRD96 94.0 95 25 10 4.97 0.5766 WVFGRD96 96.0 95 25 10 4.97 0.5629 WVFGRD96 98.0 100 25 15 4.97 0.5503
The best solution is
WVFGRD96 66.0 80 30 15 4.90 0.7102
The mechanism corresponding to the best fit is
![]() |
|
The best fit as a function of depth is given in the following figure:
![]() |
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed, the velocity model used in the predictions may not be perfect and the epicentral parameters may be be off. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
cut o DIST/3.3 -40 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.07 n 3
![]() |
Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated. The time scale is relative to the first trace sample. |
![]() |
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to the waveforms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
The WUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows (The format is in the model96 format of Computer Programs in Seismology).
MODEL.01 Model after 8 iterations ISOTROPIC KGS FLAT EARTH 1-D CONSTANT VELOCITY LINE08 LINE09 LINE10 LINE11 H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS 1.9000 3.4065 2.0089 2.2150 0.302E-02 0.679E-02 0.00 0.00 1.00 1.00 6.1000 5.5445 3.2953 2.6089 0.349E-02 0.784E-02 0.00 0.00 1.00 1.00 13.0000 6.2708 3.7396 2.7812 0.212E-02 0.476E-02 0.00 0.00 1.00 1.00 19.0000 6.4075 3.7680 2.8223 0.111E-02 0.249E-02 0.00 0.00 1.00 1.00 0.0000 7.9000 4.6200 3.2760 0.164E-10 0.370E-10 0.00 0.00 1.00 1.00