The ANSS event ID is ak0095ij72td and the event page is at https://earthquake.usgs.gov/earthquakes/eventpage/ak0095ij72td/executive.
2009/04/30 04:54:57 58.993 -151.311 52.7 5 Alaska
USGS/SLU Moment Tensor Solution
ENS 2009/04/30 04:54:57:0 58.99 -151.31 52.7 5.0 Alaska
Stations used:
AK.BMR AK.BRLK AK.DIV AK.EYAK AK.MCK AK.PAX AK.RAG AK.RC01
AK.SWD AK.TRF AT.MID AT.OHAK AT.PMR AT.SVW2
Filtering commands used:
hp c 0.0200 n 3
lp c 0.050 n 3
Best Fitting Double Couple
Mo = 2.82e+23 dyne-cm
Mw = 4.90
Z = 45 km
Plane Strike Dip Rake
NP1 184 66 -97
NP2 20 25 -75
Principal Axes:
Axis Value Plunge Azimuth
T 2.82e+23 21 279
N 0.00e+00 6 186
P -2.82e+23 68 80
Moment Tensor: (dyne-cm)
Component Value
Mxx 4.58e+21
Mxy -4.34e+22
Mxz -2.27e+21
Myy 2.04e+23
Myz -1.87e+23
Mzz -2.09e+23
#######-------
##########-----------#
############-------------###
############----------------##
#############------------------###
##############-------------------###
##############--------------------####
###############---------------------####
## #########----------------------####
### T #########---------- ---------#####
### #########---------- P ---------#####
###############---------- ---------#####
###############----------------------#####
##############---------------------#####
##############--------------------######
#############--------------------#####
############------------------######
############----------------######
##########--------------######
##########-----------#######
########-------#######
##############
Global CMT Convention Moment Tensor:
R T P
-2.09e+23 -2.27e+21 1.87e+23
-2.27e+21 4.58e+21 4.34e+22
1.87e+23 4.34e+22 2.04e+23
Details of the solution is found at
http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20090430045457/index.html
|
STK = 20
DIP = 25
RAKE = -75
MW = 4.90
HS = 45.0
The NDK file is 20090430045457.ndk The waveform inversion is preferred.
The following compares this source inversion to those provided by others. The purpose is to look for major differences and also to note slight differences that might be inherent to the processing procedure. For completeness the USGS/SLU solution is repeated from above.
USGS/SLU Moment Tensor Solution
ENS 2009/04/30 04:54:57:0 58.99 -151.31 52.7 5.0 Alaska
Stations used:
AK.BMR AK.BRLK AK.DIV AK.EYAK AK.MCK AK.PAX AK.RAG AK.RC01
AK.SWD AK.TRF AT.MID AT.OHAK AT.PMR AT.SVW2
Filtering commands used:
hp c 0.0200 n 3
lp c 0.050 n 3
Best Fitting Double Couple
Mo = 2.82e+23 dyne-cm
Mw = 4.90
Z = 45 km
Plane Strike Dip Rake
NP1 184 66 -97
NP2 20 25 -75
Principal Axes:
Axis Value Plunge Azimuth
T 2.82e+23 21 279
N 0.00e+00 6 186
P -2.82e+23 68 80
Moment Tensor: (dyne-cm)
Component Value
Mxx 4.58e+21
Mxy -4.34e+22
Mxz -2.27e+21
Myy 2.04e+23
Myz -1.87e+23
Mzz -2.09e+23
#######-------
##########-----------#
############-------------###
############----------------##
#############------------------###
##############-------------------###
##############--------------------####
###############---------------------####
## #########----------------------####
### T #########---------- ---------#####
### #########---------- P ---------#####
###############---------- ---------#####
###############----------------------#####
##############---------------------#####
##############--------------------######
#############--------------------#####
############------------------######
############----------------######
##########--------------######
##########-----------#######
########-------#######
##############
Global CMT Convention Moment Tensor:
R T P
-2.09e+23 -2.27e+21 1.87e+23
-2.27e+21 4.58e+21 4.34e+22
1.87e+23 4.34e+22 2.04e+23
Details of the solution is found at
http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20090430045457/index.html
|
Moment tensor inversion summary for event 2009/04/30 04:54
Date: 2009/04/30
Time: 04:54 (UTC)
Region: Kodiak Island Region of Alaska
Mw=4.9
Location:
Lat. 58.9833; Lon. -151.2986; Depth 35 km
(Best-fitting depth from moment tensor inversion)
Solution quality: good;
Number of stations = 5
Best Double Couple:
strike dip rake
Plane 1: 194.5 61.2 -91.4
Plane 2: 17.5 28.8 -87.4
Moment Tensor Parameters:
Mo = 2.76043e+23 dyn-cm
Mxx = 0.40; Mxy = -0.49; Mxz = 0.31
Myy = 1.95; Myz = -1.37; Mzz = -2.35
Principal Axes:
value azimuth plunge
T: 2.51 285.56 16.17
N: 0.26 195.19 1.26
P: -2.76 100.85 73.77
|
Given the availability of digital waveforms for determination of the moment tensor, this section documents the added processing leading to mLg, if appropriate to the region, and ML by application of the respective IASPEI formulae. As a research study, the linear distance term of the IASPEI formula for ML is adjusted to remove a linear distance trend in residuals to give a regionally defined ML. The defined ML uses horizontal component recordings, but the same procedure is applied to the vertical components since there may be some interest in vertical component ground motions. Residual plots versus distance may indicate interesting features of ground motion scaling in some distance ranges. A residual plot of the regionalized magnitude is given as a function of distance and azimuth, since data sets may transcend different wave propagation provinces.
Left: ML computed using the IASPEI formula for Horizontal components. Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
Left: ML computed using the IASPEI formula for Vertical components (research). Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
![]() |
The focal mechanism was determined using broadband seismic waveforms. The location of the event (star) and the stations used for (red) the waveform inversion are shown in the next figure.
|
|
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green's functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
hp c 0.0200 n 3 lp c 0.050 n 3The results of this grid search are as follow:
DEPTH STK DIP RAKE MW FIT
WVFGRD96 30.0 185 70 -90 4.65 0.4790
WVFGRD96 31.0 0 20 -95 4.66 0.4873
WVFGRD96 32.0 5 20 -90 4.67 0.4947
WVFGRD96 33.0 5 20 -90 4.67 0.5015
WVFGRD96 34.0 10 20 -85 4.68 0.5073
WVFGRD96 35.0 185 65 -90 4.68 0.5129
WVFGRD96 36.0 10 25 -85 4.69 0.5180
WVFGRD96 37.0 10 25 -85 4.70 0.5226
WVFGRD96 38.0 15 25 -85 4.72 0.5266
WVFGRD96 39.0 20 25 -80 4.73 0.5305
WVFGRD96 40.0 20 25 -75 4.86 0.5285
WVFGRD96 41.0 20 25 -75 4.87 0.5331
WVFGRD96 42.0 20 25 -75 4.88 0.5365
WVFGRD96 43.0 20 25 -75 4.89 0.5389
WVFGRD96 44.0 20 25 -75 4.89 0.5404
WVFGRD96 45.0 20 25 -75 4.90 0.5409
WVFGRD96 46.0 20 25 -75 4.91 0.5407
WVFGRD96 47.0 20 25 -75 4.91 0.5396
WVFGRD96 48.0 20 25 -75 4.92 0.5377
WVFGRD96 49.0 25 30 -70 4.93 0.5355
WVFGRD96 50.0 25 30 -70 4.93 0.5326
WVFGRD96 51.0 25 30 -70 4.94 0.5290
WVFGRD96 52.0 25 30 -70 4.95 0.5246
WVFGRD96 53.0 25 30 -65 4.93 0.5200
WVFGRD96 54.0 25 30 -65 4.94 0.5148
WVFGRD96 55.0 30 30 -65 4.96 0.5092
WVFGRD96 56.0 30 30 -65 4.97 0.5031
WVFGRD96 57.0 30 30 -65 4.97 0.4966
WVFGRD96 58.0 30 30 -60 4.96 0.4898
WVFGRD96 59.0 30 30 -60 4.96 0.4827
The best solution is
WVFGRD96 45.0 20 25 -75 4.90 0.5409
The mechanism corresponding to the best fit is
|
|
|
The best fit as a function of depth is given in the following figure:
|
|
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed, the velocity model used in the predictions may not be perfect and the epicentral parameters may be be off. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
hp c 0.0200 n 3 lp c 0.050 n 3
|
| Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated. The time scale is relative to the first trace sample. |
|
| Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to the waveforms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
The WUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows (The format is in the model96 format of Computer Programs in Seismology).
MODEL.01
Model after 8 iterations
ISOTROPIC
KGS
FLAT EARTH
1-D
CONSTANT VELOCITY
LINE08
LINE09
LINE10
LINE11
H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS
1.9000 3.4065 2.0089 2.2150 0.302E-02 0.679E-02 0.00 0.00 1.00 1.00
6.1000 5.5445 3.2953 2.6089 0.349E-02 0.784E-02 0.00 0.00 1.00 1.00
13.0000 6.2708 3.7396 2.7812 0.212E-02 0.476E-02 0.00 0.00 1.00 1.00
19.0000 6.4075 3.7680 2.8223 0.111E-02 0.249E-02 0.00 0.00 1.00 1.00
0.0000 7.9000 4.6200 3.2760 0.164E-10 0.370E-10 0.00 0.00 1.00 1.00