The ANSS event ID is ci14433456 and the event page is at https://earthquake.usgs.gov/earthquakes/eventpage/ci14433456/executive.
2009/03/24 11:55:43 33.317 -115.728 6.0 4.77 California
USGS/SLU Moment Tensor Solution
ENS 2009/03/24 11:55:43:0 33.32 -115.73 6.0 4.8 California
Stations used:
AZ.CRY AZ.FRD AZ.LVA2 AZ.RDM AZ.SOL AZ.TRO AZ.WMC CI.GLA
CI.GSC CI.LDF CI.MWC II.PFO IU.TUC TA.R11A TA.W18A TA.X16A
TA.X18A TA.Y12C TA.Z14A US.WUAZ UU.KNB
Filtering commands used:
hp c 0.01 n 3
lp c 0.05 n 3
Best Fitting Double Couple
Mo = 1.23e+23 dyne-cm
Mw = 4.66
Z = 3 km
Plane Strike Dip Rake
NP1 150 76 -159
NP2 55 70 -15
Principal Axes:
Axis Value Plunge Azimuth
T 1.23e+23 4 282
N 0.00e+00 65 183
P -1.23e+23 24 14
Moment Tensor: (dyne-cm)
Component Value
Mxx -9.12e+22
Mxy -4.78e+22
Mxz -4.33e+22
Myy 1.12e+23
Myz -1.93e+22
Mzz -2.05e+22
--------------
#------------ ------
####------------ P ---------
#####------------ ----------
########--------------------------
#########-------------------------##
###########-----------------------####
###########---------------------######
T ############-------------------#######
############-----------------##########
################--------------############
#################-----------##############
##################--------################
###################---##################
###################-####################
###############-----##################
##########----------################
---------------------#############
---------------------#########
---------------------#######
---------------------#
--------------
Global CMT Convention Moment Tensor:
R T P
-2.05e+22 -4.33e+22 1.93e+22
-4.33e+22 -9.12e+22 4.78e+22
1.93e+22 4.78e+22 1.12e+23
Details of the solution is found at
http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20090324115543/index.html
|
STK = 55
DIP = 70
RAKE = -15
MW = 4.66
HS = 3.0
The NDK file is 20090324115543.ndk The waveform inversion is preferred.
The following compares this source inversion to those provided by others. The purpose is to look for major differences and also to note slight differences that might be inherent to the processing procedure. For completeness the USGS/SLU solution is repeated from above.
USGS/SLU Moment Tensor Solution
ENS 2009/03/24 11:55:43:0 33.32 -115.73 6.0 4.8 California
Stations used:
AZ.CRY AZ.FRD AZ.LVA2 AZ.RDM AZ.SOL AZ.TRO AZ.WMC CI.GLA
CI.GSC CI.LDF CI.MWC II.PFO IU.TUC TA.R11A TA.W18A TA.X16A
TA.X18A TA.Y12C TA.Z14A US.WUAZ UU.KNB
Filtering commands used:
hp c 0.01 n 3
lp c 0.05 n 3
Best Fitting Double Couple
Mo = 1.23e+23 dyne-cm
Mw = 4.66
Z = 3 km
Plane Strike Dip Rake
NP1 150 76 -159
NP2 55 70 -15
Principal Axes:
Axis Value Plunge Azimuth
T 1.23e+23 4 282
N 0.00e+00 65 183
P -1.23e+23 24 14
Moment Tensor: (dyne-cm)
Component Value
Mxx -9.12e+22
Mxy -4.78e+22
Mxz -4.33e+22
Myy 1.12e+23
Myz -1.93e+22
Mzz -2.05e+22
--------------
#------------ ------
####------------ P ---------
#####------------ ----------
########--------------------------
#########-------------------------##
###########-----------------------####
###########---------------------######
T ############-------------------#######
############-----------------##########
################--------------############
#################-----------##############
##################--------################
###################---##################
###################-####################
###############-----##################
##########----------################
---------------------#############
---------------------#########
---------------------#######
---------------------#
--------------
Global CMT Convention Moment Tensor:
R T P
-2.05e+22 -4.33e+22 1.93e+22
-4.33e+22 -9.12e+22 4.78e+22
1.93e+22 4.78e+22 1.12e+23
Details of the solution is found at
http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20090324115543/index.html
|
REAL-TIME SOLUTION: OPERATOR REVIEWED
Reviewed On: 03/24/2009 12:35:16
Inversion Method: Complete Waveform
Number of Stations used: 6
Stations: CI.BC3 CI.BLY CI.GLA CI.WES CI.DVT CI.BOR
Real-Time Solution:
-------------------
Event ID : 14433456
Magnitude : 4.73
Depth (km) : 5.6
Origin Time : 03/24/2009 11:55:43:670
Latitude : 33.31
Longitude : -115.74
Further Information at: http://pasadena.wr.usgs.gov/recenteqs/Quakes/ci14433456.htm
SCSN Moment Tensor Solution:
----------------------------
Moment Magnitude : 4.78
Depth (km) : 5
Variance Reduction(%): 93.32
Quality Factor : A
(A : Mw, MT good enough for distribution)
(B : Mw only good enough for distribution)
(C : Solution needs review before distribution)
Best Fitting Double Couple and CLVD Solution:
---------------------------------------------------
Moment Tensor: Scale = 10**21 Dyne-cm
Component Value
Mxx -163
Mxy -71
Mxz 53.9
Myy 163
Myz 1.89
Mzz 0.404
Best Fitting Double Couple Solution:
--------------------------------------------------
Moment Tensor: Scale = 10**23 Dyne-cm
Component Value
Mxx -1.573
Mxy -0.731
Mxz 0.489
Myy 1.702
Myz 0.013
Mzz -0.129
Principle Axes:
Axis Value Plunge Azimuth
T 1.862 3 282
N 0.000 74 22
P -1.862 16 192
Best Fitting Double-Couple:
Mo = 1.86E+23 Dyne-cm
Plane Strike Rake Dip
NP1 236 -13 81
NP2 328 -171 77
Moment Magnitude = 4.78
-------
-------------------
###----------------------
#######----------------------
##########-----------------------
#############--------------------##
################--------------#######
##################----------###########
##################-----###############
T #######################################
##################---##################
#################-------#################
##############-----------################
############--------------###############
#########-----------------#############
#######--------------------############
####-----------------------##########
#-------------------------#########
--------------------------#######
---------- ------------####
-------- P ------------##
----- -----------
-------
Lower Hemisphere Equiangle Projection
|
|
Given the availability of digital waveforms for determination of the moment tensor, this section documents the added processing leading to mLg, if appropriate to the region, and ML by application of the respective IASPEI formulae. As a research study, the linear distance term of the IASPEI formula for ML is adjusted to remove a linear distance trend in residuals to give a regionally defined ML. The defined ML uses horizontal component recordings, but the same procedure is applied to the vertical components since there may be some interest in vertical component ground motions. Residual plots versus distance may indicate interesting features of ground motion scaling in some distance ranges. A residual plot of the regionalized magnitude is given as a function of distance and azimuth, since data sets may transcend different wave propagation provinces.
Left: ML computed using the IASPEI formula for Horizontal components. Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
Left: ML computed using the IASPEI formula for Vertical components (research). Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
![]() |
The focal mechanism was determined using broadband seismic waveforms. The location of the event (star) and the stations used for (red) the waveform inversion are shown in the next figure.
|
|
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green's functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
hp c 0.01 n 3 lp c 0.05 n 3The results of this grid search are as follow:
DEPTH STK DIP RAKE MW FIT
WVFGRD96 0.5 235 75 -15 4.46 0.5054
WVFGRD96 1.0 60 90 0 4.51 0.5514
WVFGRD96 2.0 55 75 -15 4.60 0.6544
WVFGRD96 3.0 55 70 -15 4.66 0.7051
WVFGRD96 4.0 60 85 5 4.70 0.7037
WVFGRD96 5.0 60 80 10 4.73 0.6829
WVFGRD96 6.0 60 75 10 4.75 0.6631
WVFGRD96 7.0 60 75 10 4.76 0.6494
WVFGRD96 8.0 60 70 15 4.79 0.6449
WVFGRD96 9.0 60 70 20 4.79 0.6258
WVFGRD96 10.0 60 65 20 4.80 0.6131
WVFGRD96 11.0 60 65 20 4.80 0.6054
WVFGRD96 12.0 60 70 25 4.80 0.5994
WVFGRD96 13.0 65 65 30 4.81 0.5981
WVFGRD96 14.0 65 60 30 4.82 0.5968
WVFGRD96 15.0 65 60 30 4.83 0.5955
WVFGRD96 16.0 65 65 35 4.83 0.5928
WVFGRD96 17.0 65 65 35 4.83 0.5893
WVFGRD96 18.0 65 65 35 4.84 0.5842
WVFGRD96 19.0 65 65 35 4.84 0.5782
WVFGRD96 20.0 65 65 35 4.85 0.5715
WVFGRD96 21.0 65 65 35 4.86 0.5672
WVFGRD96 22.0 65 65 35 4.86 0.5591
WVFGRD96 23.0 65 65 35 4.87 0.5501
WVFGRD96 24.0 65 65 35 4.87 0.5402
WVFGRD96 25.0 65 65 35 4.88 0.5296
WVFGRD96 26.0 65 65 35 4.88 0.5183
WVFGRD96 27.0 65 65 35 4.88 0.5067
WVFGRD96 28.0 60 65 25 4.88 0.4969
WVFGRD96 29.0 60 65 25 4.89 0.4875
The best solution is
WVFGRD96 3.0 55 70 -15 4.66 0.7051
The mechanism corresponding to the best fit is
|
|
|
The best fit as a function of depth is given in the following figure:
|
|
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed, the velocity model used in the predictions may not be perfect and the epicentral parameters may be be off. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
hp c 0.01 n 3 lp c 0.05 n 3
|
| Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated. The time scale is relative to the first trace sample. |
|
| Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to the waveforms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
The following figure shows the stations used in the grid search for the best focal mechanism to fit the surface-wave spectral amplitudes of the Love and Rayleigh waves.
|
|
|
The surface-wave determined focal mechanism is shown here.
NODAL PLANES
STK= 323.28
DIP= 85.30
RAKE= 159.93
OR
STK= 54.99
DIP= 70.00
RAKE= 5.00
DEPTH = 9.0 km
Mw = 4.87
Best Fit 0.8148 - P-T axis plot gives solutions with FIT greater than FIT90
![]() |
Surface wave analysis was performed using codes from Computer Programs in Seismology, specifically the multiple filter analysis program do_mft and the surface-wave radiation pattern search program srfgrd96.
Digital data were collected, instrument response removed and traces converted
to Z, R an T components. Multiple filter analysis was applied to the Z and T traces to obtain the Rayleigh- and Love-wave spectral amplitudes, respectively.
These were input to the search program which examined all depths between 1 and 25 km
and all possible mechanisms.
|
|
|
|
| Pressure-tension axis trends. Since the surface-wave spectra search does not distinguish between P and T axes and since there is a 180 ambiguity in strike, all possible P and T axes are plotted. First motion data and waveforms will be used to select the preferred mechanism. The purpose of this plot is to provide an idea of the possible range of solutions. The P and T-axes for all mechanisms with goodness of fit greater than 0.9 FITMAX (above) are plotted here. |
|
| Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to the Love and Rayleigh wave radiation patterns. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. Because of the symmetry of the spectral amplitude rediation patterns, only strikes from 0-180 degrees are sampled. |
|
|
The WUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows (The format is in the model96 format of Computer Programs in Seismology).
MODEL.01
Model after 8 iterations
ISOTROPIC
KGS
FLAT EARTH
1-D
CONSTANT VELOCITY
LINE08
LINE09
LINE10
LINE11
H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS
1.9000 3.4065 2.0089 2.2150 0.302E-02 0.679E-02 0.00 0.00 1.00 1.00
6.1000 5.5445 3.2953 2.6089 0.349E-02 0.784E-02 0.00 0.00 1.00 1.00
13.0000 6.2708 3.7396 2.7812 0.212E-02 0.476E-02 0.00 0.00 1.00 1.00
19.0000 6.4075 3.7680 2.8223 0.111E-02 0.249E-02 0.00 0.00 1.00 1.00
0.0000 7.9000 4.6200 3.2760 0.164E-10 0.370E-10 0.00 0.00 1.00 1.00