The ANSS event ID is ak0092j87cze and the event page is at https://earthquake.usgs.gov/earthquakes/eventpage/ak0092j87cze/executive.
2009/02/24 16:20:23 62.875 -143.799 5.9 4.1 Alaska
USGS/SLU Moment Tensor Solution ENS 2009/02/24 16:20:23:0 62.88 -143.80 5.9 4.1 Alaska Stations used: AK.DIV AK.MCK AK.PAX AK.PNL AK.SAW AK.SWD AK.TRF AT.PMR IU.COLA US.EGAK Filtering commands used: hp c 0.02 n 3 lp c 0.06 n 3 Best Fitting Double Couple Mo = 1.10e+22 dyne-cm Mw = 3.96 Z = 13 km Plane Strike Dip Rake NP1 170 79 139 NP2 270 50 15 Principal Axes: Axis Value Plunge Azimuth T 1.10e+22 36 122 N 0.00e+00 48 337 P -1.10e+22 18 226 Moment Tensor: (dyne-cm) Component Value Mxx -2.79e+21 Mxy -8.11e+21 Mxz -4.93e+20 Myy -1.94e+14 Myz 6.81e+21 Mzz 2.79e+21 ###----------- #######--------------- ##########------------------ ###########------------------- #############--------------------- ##############---------------------- #########------##############--------- ######----------##################------ ###-------------#####################--- ##----------------######################-- #-----------------#######################- ------------------######################## -------------------####################### ------------------############ ####### ------------------############ T ####### ------------------########### ###### ---- ----------################### --- P -----------################# - -----------############### ---------------############# -------------######### ----------#### Global CMT Convention Moment Tensor: R T P 2.79e+21 -4.93e+20 -6.81e+21 -4.93e+20 -2.79e+21 8.11e+21 -6.81e+21 8.11e+21 -1.94e+14 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20090224162023/index.html |
STK = 270 DIP = 50 RAKE = 15 MW = 3.96 HS = 13.0
The NDK file is 20090224162023.ndk The waveform inversion is preferred.
The following compares this source inversion to those provided by others. The purpose is to look for major differences and also to note slight differences that might be inherent to the processing procedure. For completeness the USGS/SLU solution is repeated from above.
USGS/SLU Moment Tensor Solution ENS 2009/02/24 16:20:23:0 62.88 -143.80 5.9 4.1 Alaska Stations used: AK.DIV AK.MCK AK.PAX AK.PNL AK.SAW AK.SWD AK.TRF AT.PMR IU.COLA US.EGAK Filtering commands used: hp c 0.02 n 3 lp c 0.06 n 3 Best Fitting Double Couple Mo = 1.10e+22 dyne-cm Mw = 3.96 Z = 13 km Plane Strike Dip Rake NP1 170 79 139 NP2 270 50 15 Principal Axes: Axis Value Plunge Azimuth T 1.10e+22 36 122 N 0.00e+00 48 337 P -1.10e+22 18 226 Moment Tensor: (dyne-cm) Component Value Mxx -2.79e+21 Mxy -8.11e+21 Mxz -4.93e+20 Myy -1.94e+14 Myz 6.81e+21 Mzz 2.79e+21 ###----------- #######--------------- ##########------------------ ###########------------------- #############--------------------- ##############---------------------- #########------##############--------- ######----------##################------ ###-------------#####################--- ##----------------######################-- #-----------------#######################- ------------------######################## -------------------####################### ------------------############ ####### ------------------############ T ####### ------------------########### ###### ---- ----------################### --- P -----------################# - -----------############### ---------------############# -------------######### ----------#### Global CMT Convention Moment Tensor: R T P 2.79e+21 -4.93e+20 -6.81e+21 -4.93e+20 -2.79e+21 8.11e+21 -6.81e+21 8.11e+21 -1.94e+14 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20090224162023/index.html |
Moment tensor inversion summary for event 2009/02/24 16:20 Date: 2009/02/24 Time: 16:20 (UTC) Region: East-central Region of Alaska Mw=4.1 Location: Lat. 62.9267; Lon. -143.6793; Depth 10 km (Best-fitting depth from moment tensor inversion) Solution quality: good; Number of stations = 11 Best Double Couple: strike dip rake Plane 1: 168.3 81.2 143.0 Plane 2: 264.9 53.5 11.0 Moment Tensor Parameters: Mo = 1.44756e+22 dyn-cm Mxx = -0.46; Mxy = -1.09; Mxz = -0.04 Myy = 0.22; Myz = 0.86; Mzz = 0.24 Principal Axes: value azimuth plunge T: 1.47 120.02 31.91 N: -0.05 336.86 52.11 P: -1.42 221.84 18.21 |
![]() |
Given the availability of digital waveforms for determination of the moment tensor, this section documents the added processing leading to mLg, if appropriate to the region, and ML by application of the respective IASPEI formulae. As a research study, the linear distance term of the IASPEI formula for ML is adjusted to remove a linear distance trend in residuals to give a regionally defined ML. The defined ML uses horizontal component recordings, but the same procedure is applied to the vertical components since there may be some interest in vertical component ground motions. Residual plots versus distance may indicate interesting features of ground motion scaling in some distance ranges. A residual plot of the regionalized magnitude is given as a function of distance and azimuth, since data sets may transcend different wave propagation provinces.
Left: ML computed using the IASPEI formula for Horizontal components. Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
Left: ML computed using the IASPEI formula for Vertical components (research). Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
![]() |
The focal mechanism was determined using broadband seismic waveforms. The location of the event (star) and the stations used for (red) the waveform inversion are shown in the next figure.
![]() |
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green's functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
hp c 0.02 n 3 lp c 0.06 n 3The results of this grid search are as follow:
DEPTH STK DIP RAKE MW FIT WVFGRD96 0.5 70 50 -30 3.86 0.5365 WVFGRD96 1.0 65 50 -40 3.88 0.5462 WVFGRD96 2.0 65 45 -40 3.93 0.5486 WVFGRD96 3.0 255 35 -25 3.95 0.5344 WVFGRD96 4.0 260 40 -15 3.93 0.5537 WVFGRD96 5.0 260 40 -15 3.93 0.5711 WVFGRD96 6.0 265 45 0 3.92 0.5878 WVFGRD96 7.0 265 45 0 3.92 0.6011 WVFGRD96 8.0 265 50 5 3.92 0.6114 WVFGRD96 9.0 270 50 15 3.93 0.6232 WVFGRD96 10.0 270 45 15 3.95 0.6294 WVFGRD96 11.0 270 50 20 3.96 0.6370 WVFGRD96 12.0 270 50 20 3.96 0.6390 WVFGRD96 13.0 270 50 15 3.96 0.6421 WVFGRD96 14.0 270 50 15 3.96 0.6406 WVFGRD96 15.0 275 50 20 3.97 0.6391 WVFGRD96 16.0 275 50 20 3.97 0.6368 WVFGRD96 17.0 275 50 20 3.97 0.6323 WVFGRD96 18.0 275 50 20 3.98 0.6269 WVFGRD96 19.0 275 50 20 3.98 0.6223 WVFGRD96 20.0 275 50 20 4.00 0.6178 WVFGRD96 21.0 275 50 20 4.01 0.6116 WVFGRD96 22.0 275 50 20 4.01 0.6040 WVFGRD96 23.0 275 50 20 4.01 0.5957 WVFGRD96 24.0 275 50 15 4.01 0.5877 WVFGRD96 25.0 275 50 15 4.02 0.5795 WVFGRD96 26.0 275 50 15 4.02 0.5714 WVFGRD96 27.0 275 50 10 4.02 0.5633 WVFGRD96 28.0 290 50 20 4.04 0.5562 WVFGRD96 29.0 290 50 20 4.04 0.5494
The best solution is
WVFGRD96 13.0 270 50 15 3.96 0.6421
The mechanism corresponding to the best fit is
![]() |
|
The best fit as a function of depth is given in the following figure:
![]() |
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed, the velocity model used in the predictions may not be perfect and the epicentral parameters may be be off. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
hp c 0.02 n 3 lp c 0.06 n 3
![]() |
Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated. The time scale is relative to the first trace sample. |
![]() |
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to the waveforms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
The CUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows (The format is in the model96 format of Computer Programs in Seismology).
MODEL.01 CUS Model with Q from simple gamma values ISOTROPIC KGS FLAT EARTH 1-D CONSTANT VELOCITY LINE08 LINE09 LINE10 LINE11 H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS 1.0000 5.0000 2.8900 2.5000 0.172E-02 0.387E-02 0.00 0.00 1.00 1.00 9.0000 6.1000 3.5200 2.7300 0.160E-02 0.363E-02 0.00 0.00 1.00 1.00 10.0000 6.4000 3.7000 2.8200 0.149E-02 0.336E-02 0.00 0.00 1.00 1.00 20.0000 6.7000 3.8700 2.9020 0.000E-04 0.000E-04 0.00 0.00 1.00 1.00 0.0000 8.1500 4.7000 3.3640 0.194E-02 0.431E-02 0.00 0.00 1.00 1.00