Location

Location ANSS

The ANSS event ID is uw10763723 and the event page is at https://earthquake.usgs.gov/earthquakes/eventpage/uw10763723/executive.

2009/01/30 13:25:04 47.786 -122.585 62.2 4.67 Washington

Focal Mechanism

 USGS/SLU Moment Tensor Solution
 ENS  2009/01/30 13:25:04:0  47.79 -122.58  62.2 4.7 Washington
 
 Stations used:
   BK.HUMO CN.HNB CN.HOPB CN.LLLB CN.PGC CN.PNT CN.SNB CN.VGZ 
   IU.COR LI.LTH US.BMO US.HAWA US.NLWA UW.BRAN UW.IZEE 
   UW.KENT UW.LEBA UW.LON UW.LTY UW.OFR UW.OMAK UW.OPC UW.PASS 
   UW.WISH UW.YACT 
 
 Filtering commands used:
   hp c 0.02 n 3
   lp c 0.06 n 3
 
 Best Fitting Double Couple
  Mo = 7.59e+22 dyne-cm
  Mw = 4.52 
  Z  = 55 km
  Plane   Strike  Dip  Rake
   NP1      218    80   -165
   NP2      125    75   -10
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   7.59e+22      4     351
    N   0.00e+00     72     249
    P  -7.59e+22     18      82

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx     7.22e+22
       Mxy    -2.16e+22
       Mxz     1.75e+21
       Myy    -6.56e+22
       Myz    -2.24e+22
       Mzz    -6.59e+21
                                                     
                                                     
                                                     
                                                     
                     ## T #########                  
                 ######   #############              
              ##########################--           
             ########################------          
           ########################----------        
          --#####################-------------       
         ----###################---------------      
        -------###############------------------     
        ---------############---------------   -     
       -----------#########----------------- P --    
       --------------#####------------------   --    
       ----------------#-------------------------    
       ----------------##------------------------    
        --------------######--------------------     
        ------------###########-----------------     
         ----------###############-------------      
          --------#####################-------       
           ------############################        
             ---###########################          
              --##########################           
                 ######################              
                     ##############                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
 -6.59e+21   1.75e+21   2.24e+22 
  1.75e+21   7.22e+22   2.16e+22 
  2.24e+22   2.16e+22  -6.56e+22 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20090130132504/index.html
        

Preferred Solution

The preferred solution from an analysis of the surface-wave spectral amplitude radiation pattern, waveform inversion or first motion observations is

      STK = 125
      DIP = 75
     RAKE = -10
       MW = 4.52
       HS = 55.0

The NDK file is 20090130132504.ndk The waveform inversion is preferred.

Moment Tensor Comparison

The following compares this source inversion to those provided by others. The purpose is to look for major differences and also to note slight differences that might be inherent to the processing procedure. For completeness the USGS/SLU solution is repeated from above.
SLU
PNSN
 USGS/SLU Moment Tensor Solution
 ENS  2009/01/30 13:25:04:0  47.79 -122.58  62.2 4.7 Washington
 
 Stations used:
   BK.HUMO CN.HNB CN.HOPB CN.LLLB CN.PGC CN.PNT CN.SNB CN.VGZ 
   IU.COR LI.LTH US.BMO US.HAWA US.NLWA UW.BRAN UW.IZEE 
   UW.KENT UW.LEBA UW.LON UW.LTY UW.OFR UW.OMAK UW.OPC UW.PASS 
   UW.WISH UW.YACT 
 
 Filtering commands used:
   hp c 0.02 n 3
   lp c 0.06 n 3
 
 Best Fitting Double Couple
  Mo = 7.59e+22 dyne-cm
  Mw = 4.52 
  Z  = 55 km
  Plane   Strike  Dip  Rake
   NP1      218    80   -165
   NP2      125    75   -10
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   7.59e+22      4     351
    N   0.00e+00     72     249
    P  -7.59e+22     18      82

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx     7.22e+22
       Mxy    -2.16e+22
       Mxz     1.75e+21
       Myy    -6.56e+22
       Myz    -2.24e+22
       Mzz    -6.59e+21
                                                     
                                                     
                                                     
                                                     
                     ## T #########                  
                 ######   #############              
              ##########################--           
             ########################------          
           ########################----------        
          --#####################-------------       
         ----###################---------------      
        -------###############------------------     
        ---------############---------------   -     
       -----------#########----------------- P --    
       --------------#####------------------   --    
       ----------------#-------------------------    
       ----------------##------------------------    
        --------------######--------------------     
        ------------###########-----------------     
         ----------###############-------------      
          --------#####################-------       
           ------############################        
             ---###########################          
              --##########################           
                 ######################              
                     ##############                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
 -6.59e+21   1.75e+21   2.24e+22 
  1.75e+21   7.22e+22   2.16e+22 
  2.24e+22   2.16e+22  -6.56e+22 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20090130132504/index.html
	


P-wave first motion solution from the University of Washington
20090130 13:24 8.0 km NE of Poulsbo, WA
Lat=47.78550, Lon=-122.56833, Depth=62.7, Md=4.5
Moment magnitude	4.5
Scalar moment	6.90939 * 1022 dyn-cm
Percent double couple	97.0%
Percent CLVD	3.0%
Moment tensor elements (* 1022 dyn-cm) Mxx: 6.71259	
Mxy: -1.3965	Mxz: -0.25936
Mxy: -1.3965	Myy: -6.4187	Myz: -1.5988
Mxz: -0.25936	Myz: -1.5988	Mzz: -0.29381
	Fault Option 1	Fault Option 2
Strike(deg)	128.0	220.0
Dip(deg)	81.0	80.0
Rake(deg)	-10.0	-171.0

Velocity Model:
P Velocity (km/s)	Top of Layer (km)
5.40	0.0
6.38	4.0
6.59	9.0
6.73	16.0
6.86	20.0
6.95	25.0
7.80	41.0
Shear wave velocities are calculated from the Pwave 
velocities using a Vp/Vs ratio of 1.78. 

http://spike.ess.washington.edu/SEIS/EQ_Special/WEBDIR_09013013245p/MT.html


        

Magnitudes

Given the availability of digital waveforms for determination of the moment tensor, this section documents the added processing leading to mLg, if appropriate to the region, and ML by application of the respective IASPEI formulae. As a research study, the linear distance term of the IASPEI formula for ML is adjusted to remove a linear distance trend in residuals to give a regionally defined ML. The defined ML uses horizontal component recordings, but the same procedure is applied to the vertical components since there may be some interest in vertical component ground motions. Residual plots versus distance may indicate interesting features of ground motion scaling in some distance ranges. A residual plot of the regionalized magnitude is given as a function of distance and azimuth, since data sets may transcend different wave propagation provinces.

ML Magnitude


Left: ML computed using the IASPEI formula for Horizontal components. Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot. Right: Residuals from new relation as a function of distance and azimuth.


Left: ML computed using the IASPEI formula for Vertical components (research). Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot. Right: Residuals from new relation as a function of distance and azimuth.

Context

The left panel of the next figure presents the focal mechanism for this earthquake (red) in the context of other nearby events (blue) in the SLU Moment Tensor Catalog. The right panel shows the inferred direction of maximum compressive stress and the type of faulting (green is strike-slip, red is normal, blue is thrust; oblique is shown by a combination of colors). Thus context plot is useful for assessing the appropriateness of the moment tensor of this event.

Waveform Inversion using wvfgrd96

The focal mechanism was determined using broadband seismic waveforms. The location of the event (star) and the stations used for (red) the waveform inversion are shown in the next figure.
Location of broadband stations used for waveform inversion

The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green's functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.

The observed and predicted traces are filtered using the following gsac commands:

hp c 0.02 n 3
lp c 0.06 n 3
The results of this grid search are as follow:

           DEPTH  STK   DIP  RAKE   MW    FIT
WVFGRD96    0.5    40    80   -10   3.68 0.1774
WVFGRD96    1.0    40    90     0   3.70 0.1934
WVFGRD96    2.0    40    90     0   3.81 0.2479
WVFGRD96    3.0    40    90     0   3.85 0.2697
WVFGRD96    4.0   310    85    20   3.91 0.2870
WVFGRD96    5.0   130    90   -20   3.93 0.3021
WVFGRD96    6.0   130    85   -20   3.96 0.3176
WVFGRD96    7.0   130    85   -15   3.99 0.3327
WVFGRD96    8.0   130    85   -20   4.02 0.3472
WVFGRD96    9.0   130    85   -20   4.04 0.3573
WVFGRD96   10.0   310    90    15   4.05 0.3644
WVFGRD96   11.0   310    90    15   4.07 0.3717
WVFGRD96   12.0   310    90    15   4.09 0.3794
WVFGRD96   13.0   310    90    15   4.10 0.3871
WVFGRD96   14.0   130    85   -15   4.11 0.3957
WVFGRD96   15.0   130    85   -15   4.13 0.4037
WVFGRD96   16.0   130    85   -10   4.14 0.4120
WVFGRD96   17.0   130    85   -10   4.15 0.4202
WVFGRD96   18.0   130    85   -10   4.16 0.4290
WVFGRD96   19.0   130    85   -10   4.17 0.4375
WVFGRD96   20.0   130    85   -10   4.18 0.4456
WVFGRD96   21.0   130    85   -10   4.20 0.4537
WVFGRD96   22.0   130    85   -10   4.21 0.4614
WVFGRD96   23.0   130    85   -10   4.22 0.4685
WVFGRD96   24.0   130    85    -5   4.23 0.4758
WVFGRD96   25.0   130    85    -5   4.24 0.4829
WVFGRD96   26.0   130    85    -5   4.25 0.4897
WVFGRD96   27.0   130    85    -5   4.26 0.4960
WVFGRD96   28.0   130    85    -5   4.26 0.5018
WVFGRD96   29.0   130    85    -5   4.27 0.5070
WVFGRD96   30.0   130    85    -5   4.28 0.5119
WVFGRD96   31.0   130    85    -5   4.29 0.5169
WVFGRD96   32.0   130    85    -5   4.30 0.5214
WVFGRD96   33.0   130    85    -5   4.31 0.5257
WVFGRD96   34.0   130    80    -5   4.32 0.5298
WVFGRD96   35.0   130    80    -5   4.34 0.5340
WVFGRD96   36.0   130    80    -5   4.35 0.5382
WVFGRD96   37.0   130    80    -5   4.36 0.5426
WVFGRD96   38.0   130    85    -5   4.38 0.5473
WVFGRD96   39.0   130    85    -5   4.39 0.5536
WVFGRD96   40.0   125    75   -10   4.42 0.5606
WVFGRD96   41.0   125    75   -10   4.43 0.5644
WVFGRD96   42.0   125    75   -10   4.44 0.5670
WVFGRD96   43.0   125    75   -10   4.45 0.5691
WVFGRD96   44.0   125    75   -10   4.46 0.5712
WVFGRD96   45.0   125    75   -10   4.47 0.5728
WVFGRD96   46.0   125    75   -10   4.47 0.5739
WVFGRD96   47.0   125    75   -10   4.48 0.5747
WVFGRD96   48.0   125    75   -10   4.49 0.5761
WVFGRD96   49.0   125    75   -10   4.49 0.5772
WVFGRD96   50.0   125    75   -10   4.50 0.5779
WVFGRD96   51.0   125    75   -10   4.50 0.5780
WVFGRD96   52.0   125    75   -10   4.51 0.5788
WVFGRD96   53.0   125    75   -10   4.51 0.5792
WVFGRD96   54.0   125    75   -10   4.52 0.5790
WVFGRD96   55.0   125    75   -10   4.52 0.5797
WVFGRD96   56.0   125    75   -10   4.53 0.5795
WVFGRD96   57.0   125    75   -10   4.53 0.5787
WVFGRD96   58.0   125    75   -10   4.53 0.5789
WVFGRD96   59.0   125    75   -10   4.54 0.5782
WVFGRD96   60.0   125    75   -10   4.54 0.5776
WVFGRD96   61.0   125    75   -10   4.54 0.5771
WVFGRD96   62.0   125    75   -10   4.55 0.5762
WVFGRD96   63.0   125    75   -10   4.55 0.5756
WVFGRD96   64.0   125    75   -10   4.55 0.5740
WVFGRD96   65.0   125    75   -10   4.55 0.5734
WVFGRD96   66.0   125    75   -15   4.55 0.5720
WVFGRD96   67.0   125    75   -15   4.56 0.5718
WVFGRD96   68.0   125    75   -15   4.56 0.5703
WVFGRD96   69.0   125    75   -15   4.56 0.5689

The best solution is

WVFGRD96   55.0   125    75   -10   4.52 0.5797

The mechanism corresponding to the best fit is
Figure 1. Waveform inversion focal mechanism

The best fit as a function of depth is given in the following figure:

Figure 2. Depth sensitivity for waveform mechanism

The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed, the velocity model used in the predictions may not be perfect and the epicentral parameters may be be off. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).

The bandpass filter used in the processing and for the display was

hp c 0.02 n 3
lp c 0.06 n 3
Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated. The time scale is relative to the first trace sample.

Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to the waveforms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure.

A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:

Assuming only a mislocation, the time shifts are fit to a functional form:

 Time_shift = A + B cos Azimuth + C Sin Azimuth

The time shifts for this inversion lead to the next figure:

The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.

Velocity Model

The WUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows (The format is in the model96 format of Computer Programs in Seismology).

MODEL.01
Model after     8 iterations
ISOTROPIC
KGS
FLAT EARTH
1-D
CONSTANT VELOCITY
LINE08
LINE09
LINE10
LINE11
      H(KM)   VP(KM/S)   VS(KM/S) RHO(GM/CC)         QP         QS       ETAP       ETAS      FREFP      FREFS
     1.9000     3.4065     2.0089     2.2150  0.302E-02  0.679E-02   0.00       0.00       1.00       1.00    
     6.1000     5.5445     3.2953     2.6089  0.349E-02  0.784E-02   0.00       0.00       1.00       1.00    
    13.0000     6.2708     3.7396     2.7812  0.212E-02  0.476E-02   0.00       0.00       1.00       1.00    
    19.0000     6.4075     3.7680     2.8223  0.111E-02  0.249E-02   0.00       0.00       1.00       1.00    
     0.0000     7.9000     4.6200     3.2760  0.164E-10  0.370E-10   0.00       0.00       1.00       1.00    
Last Changed Sun Apr 28 01:07:40 PM CDT 2024