Location

Location ANSS

The ANSS event ID is ci14404512 and the event page is at https://earthquake.usgs.gov/earthquakes/eventpage/ci14404512/executive.

2008/11/20 19:23:01 32.329 -115.332 6.0 4.98 Baja California, Mexico

Focal Mechanism

 USGS/SLU Moment Tensor Solution
 ENS  2008/11/20 19:23:01:0  32.33 -115.33   6.0 5.0 Baja California, Mexico
 
 Stations used:
   CI.BAR CI.GLA CI.GSC CI.ISA CI.MWC CI.OSI CI.PASC II.PFO 
   IU.TUC LB.TPH TA.109C TA.113A TA.114A TA.116A TA.117A 
   TA.119A TA.120A TA.214A TA.217A TA.218A TA.220A TA.318A 
   TA.319A TA.U15A TA.U16A TA.U17A TA.V15A TA.V17A TA.V18A 
   TA.W13A TA.W16A TA.W18A TA.W19A TA.X16A TA.X17A TA.X18A 
   TA.X19A TA.Y12C TA.Y15A TA.Y16A TA.Y17A TA.Y18A TA.Y19A 
   TA.Z13A TA.Z14A TA.Z15A TA.Z17A TA.Z19A TA.Z20A US.WUAZ 
   UU.CCUT 
 
 Filtering commands used:
   hp c 0.02 n 3
   lp c 0.05 n 3
 
 Best Fitting Double Couple
  Mo = 1.19e+23 dyne-cm
  Mw = 4.65 
  Z  = 14 km
  Plane   Strike  Dip  Rake
   NP1      145    76   159
   NP2      240    70    15
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   1.19e+23     24     101
    N   0.00e+00     65     292
    P  -1.19e+23      4     193

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx    -1.08e+23
       Mxy    -4.54e+22
       Mxz    -7.75e+20
       Myy     8.85e+22
       Myz     4.58e+22
       Mzz     1.98e+22
                                                     
                                                     
                                                     
                                                     
                     --------------                  
                 ----------------------              
              ##--------------------------           
             ####--------------------------          
           ######----------------------------        
          ########-----------------------#####       
         ##########---------------#############      
        ############---------###################     
        #############-----######################     
       ###############-##########################    
       #############---##########################    
       ###########------##################   ####    
       #########----------################ T ####    
        ######-------------###############   ###     
        ####----------------####################     
         ##-------------------#################      
          ----------------------##############       
           ----------------------############        
             -----------------------#######          
              ------------------------####           
                 -----   --------------              
                     - P ----------                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
  1.98e+22  -7.75e+20  -4.58e+22 
 -7.75e+20  -1.08e+23   4.54e+22 
 -4.58e+22   4.54e+22   8.85e+22 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20081120192301/index.html
        

Preferred Solution

The preferred solution from an analysis of the surface-wave spectral amplitude radiation pattern, waveform inversion or first motion observations is

      STK = 240
      DIP = 70
     RAKE = 15
       MW = 4.65
       HS = 14.0

The NDK file is 20081120192301.ndk The waveform inversion is preferred.

Moment Tensor Comparison

The following compares this source inversion to those provided by others. The purpose is to look for major differences and also to note slight differences that might be inherent to the processing procedure. For completeness the USGS/SLU solution is repeated from above.
SLU
SCAL
 USGS/SLU Moment Tensor Solution
 ENS  2008/11/20 19:23:01:0  32.33 -115.33   6.0 5.0 Baja California, Mexico
 
 Stations used:
   CI.BAR CI.GLA CI.GSC CI.ISA CI.MWC CI.OSI CI.PASC II.PFO 
   IU.TUC LB.TPH TA.109C TA.113A TA.114A TA.116A TA.117A 
   TA.119A TA.120A TA.214A TA.217A TA.218A TA.220A TA.318A 
   TA.319A TA.U15A TA.U16A TA.U17A TA.V15A TA.V17A TA.V18A 
   TA.W13A TA.W16A TA.W18A TA.W19A TA.X16A TA.X17A TA.X18A 
   TA.X19A TA.Y12C TA.Y15A TA.Y16A TA.Y17A TA.Y18A TA.Y19A 
   TA.Z13A TA.Z14A TA.Z15A TA.Z17A TA.Z19A TA.Z20A US.WUAZ 
   UU.CCUT 
 
 Filtering commands used:
   hp c 0.02 n 3
   lp c 0.05 n 3
 
 Best Fitting Double Couple
  Mo = 1.19e+23 dyne-cm
  Mw = 4.65 
  Z  = 14 km
  Plane   Strike  Dip  Rake
   NP1      145    76   159
   NP2      240    70    15
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   1.19e+23     24     101
    N   0.00e+00     65     292
    P  -1.19e+23      4     193

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx    -1.08e+23
       Mxy    -4.54e+22
       Mxz    -7.75e+20
       Myy     8.85e+22
       Myz     4.58e+22
       Mzz     1.98e+22
                                                     
                                                     
                                                     
                                                     
                     --------------                  
                 ----------------------              
              ##--------------------------           
             ####--------------------------          
           ######----------------------------        
          ########-----------------------#####       
         ##########---------------#############      
        ############---------###################     
        #############-----######################     
       ###############-##########################    
       #############---##########################    
       ###########------##################   ####    
       #########----------################ T ####    
        ######-------------###############   ###     
        ####----------------####################     
         ##-------------------#################      
          ----------------------##############       
           ----------------------############        
             -----------------------#######          
              ------------------------####           
                 -----   --------------              
                     - P ----------                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
  1.98e+22  -7.75e+20  -4.58e+22 
 -7.75e+20  -1.08e+23   4.54e+22 
 -4.58e+22   4.54e+22   8.85e+22 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20081120192301/index.html
	
** SCSN Moment Tensor Solution Message **

REAL-TIME SOLUTION: NOT REVIEWED
Inversion Method: Complete Waveform
Number of Stations used: 6
Stations: CI.GLA CI.SDR CI.JEM CI.BOR CI.CTC CI.RXH 
                   
Real-Time Solution:
-------------------
Event ID    : 14404512
Magnitude   : 5.00
Depth (km)  : 37.1
Origin Time :  11/20/2008 19:23:01:900
Latitude    : 32.39
Longitude   : -115.32
Further Information at: http://pasadena.wr.usgs.gov/recenteqs/Quakes/ci14404512.htm
                            
SCSN Moment Tensor Solution:
----------------------------
Moment Magnitude     : 4.67
Depth (km)           : 5
Variance Reduction(%): 92.03
Quality Factor       : A
   (A : Mw, MT good enough for distribution)
   (B : Mw only good enough for distribution)
   (C : Solution needs review before distribution)
                                                  
                                             
Best Fitting Double Couple and CLVD Solution:
---------------------------------------------------
                                                                
Moment Tensor: Scale = 10**21 Dyne-cm
    Component   Value
       Mxx      -95.4
       Mxy      -56.1
       Mxz      -10.2
       Myy      125
       Myz      -28.8
       Mzz      -29.9

Best Fitting Double Couple Solution:              
--------------------------------------------------
 Moment Tensor: Scale = 10**23 Dyne-cm
    Component   Value
       Mxx     -1.085
       Mxy     -0.570
       Mxz     -0.195
       Myy      1.106
       Myz     -0.241
       Mzz     -0.021
 
 Principle Axes:
    Axis    Value   Plunge   Azimuth
      T     1.274       8      283
      N     0.000      76      157
      P    -1.274      11       15
 
 Best Fitting Double-Couple:
    Mo = 1.27E+23 Dyne-cm
    Plane   Strike   Rake   Dip
     NP1      149    -166    88
     NP2       59      -2    76
 
 Moment Magnitude = 4.67
                                               
                                               
                    -------                    
              -------------   ---              
           ##-------------- P ------           
         #####-------------   --------         
       ########-------------------------       
      ##########-------------------------      
     #############----------------------##     
    ###############-------------------#####    
       #############----------------#######    
   # T ##############-------------##########   
   #   ###############----------############   
   ####################------###############   
   #####################---#################   
   #####################-###################   
    ################------#################    
    ############-----------################    
     #######-----------------#############     
      ------------------------###########      
       ------------------------#########       
         -----------------------######         
           ----------------------###           
              -------------------              
                    -------                    
                                               
     Lower Hemisphere Equiangle Projection
 
=============  Station Information ==============
                                                 
Name       Distance     Azimuth     VR      ZCore
-------------------------------------------------
CI.GLA       86.684     32.080   93.107     13.00
CI.SDR      157.091    284.552   86.771     22.00
CI.JEM      142.146    302.955   91.111     18.00
CI.BOR      141.536    313.763   95.118     18.00
CI.CTC      153.615    336.133   90.594     19.00
CI.RXH       92.393    342.218   92.661     11.00

        

Magnitudes

Given the availability of digital waveforms for determination of the moment tensor, this section documents the added processing leading to mLg, if appropriate to the region, and ML by application of the respective IASPEI formulae. As a research study, the linear distance term of the IASPEI formula for ML is adjusted to remove a linear distance trend in residuals to give a regionally defined ML. The defined ML uses horizontal component recordings, but the same procedure is applied to the vertical components since there may be some interest in vertical component ground motions. Residual plots versus distance may indicate interesting features of ground motion scaling in some distance ranges. A residual plot of the regionalized magnitude is given as a function of distance and azimuth, since data sets may transcend different wave propagation provinces.

ML Magnitude


Left: ML computed using the IASPEI formula for Horizontal components. Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot. Right: Residuals from new relation as a function of distance and azimuth.


Left: ML computed using the IASPEI formula for Vertical components (research). Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot. Right: Residuals from new relation as a function of distance and azimuth.

Context

The left panel of the next figure presents the focal mechanism for this earthquake (red) in the context of other nearby events (blue) in the SLU Moment Tensor Catalog. The right panel shows the inferred direction of maximum compressive stress and the type of faulting (green is strike-slip, red is normal, blue is thrust; oblique is shown by a combination of colors). Thus context plot is useful for assessing the appropriateness of the moment tensor of this event.

Waveform Inversion using wvfgrd96

The focal mechanism was determined using broadband seismic waveforms. The location of the event (star) and the stations used for (red) the waveform inversion are shown in the next figure.
Location of broadband stations used for waveform inversion

The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green's functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.

The observed and predicted traces are filtered using the following gsac commands:

hp c 0.02 n 3
lp c 0.05 n 3
The results of this grid search are as follow:

           DEPTH  STK   DIP  RAKE   MW    FIT
WVFGRD96    0.5   235    75   -15   4.32 0.2822
WVFGRD96    1.0    55    80   -10   4.34 0.3027
WVFGRD96    2.0   235    75   -10   4.42 0.3738
WVFGRD96    3.0   235    75   -15   4.47 0.4053
WVFGRD96    4.0   235    75   -15   4.50 0.4247
WVFGRD96    5.0   235    75   -10   4.52 0.4386
WVFGRD96    6.0   235    75   -10   4.54 0.4503
WVFGRD96    7.0   235    75   -10   4.56 0.4616
WVFGRD96    8.0   235    70   -10   4.59 0.4743
WVFGRD96    9.0   235    70     5   4.60 0.4764
WVFGRD96   10.0   240    70    15   4.62 0.4815
WVFGRD96   11.0   240    70    15   4.63 0.4865
WVFGRD96   12.0   240    70    15   4.64 0.4906
WVFGRD96   13.0   240    70    15   4.65 0.4943
WVFGRD96   14.0   240    70    15   4.65 0.4963
WVFGRD96   15.0   240    70    15   4.66 0.4959
WVFGRD96   16.0   235    75    15   4.67 0.4960
WVFGRD96   17.0   235    75    15   4.68 0.4948
WVFGRD96   18.0    60    70    15   4.69 0.4916
WVFGRD96   19.0    55    70    10   4.69 0.4907
WVFGRD96   20.0    55    75    15   4.70 0.4891
WVFGRD96   21.0    55    75    15   4.71 0.4869
WVFGRD96   22.0    55    75   -15   4.72 0.4872
WVFGRD96   23.0    55    75   -15   4.73 0.4844
WVFGRD96   24.0    55    75   -15   4.74 0.4808
WVFGRD96   25.0    55    80   -15   4.74 0.4767
WVFGRD96   26.0    55    80   -15   4.75 0.4719
WVFGRD96   27.0    55    80   -15   4.76 0.4665
WVFGRD96   28.0    55    80   -15   4.76 0.4605
WVFGRD96   29.0    55    80   -15   4.77 0.4539

The best solution is

WVFGRD96   14.0   240    70    15   4.65 0.4963

The mechanism corresponding to the best fit is
Figure 1. Waveform inversion focal mechanism

The best fit as a function of depth is given in the following figure:

Figure 2. Depth sensitivity for waveform mechanism

The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed, the velocity model used in the predictions may not be perfect and the epicentral parameters may be be off. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).

The bandpass filter used in the processing and for the display was

hp c 0.02 n 3
lp c 0.05 n 3
Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated. The time scale is relative to the first trace sample.

Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to the waveforms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure.

A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:

Assuming only a mislocation, the time shifts are fit to a functional form:

 Time_shift = A + B cos Azimuth + C Sin Azimuth

The time shifts for this inversion lead to the next figure:

The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.

Surface-Wave Focal Mechanism

The following figure shows the stations used in the grid search for the best focal mechanism to fit the surface-wave spectral amplitudes of the Love and Rayleigh waves.
Location of broadband stations used to obtain focal mechanism from surface-wave spectral amplitudes

The surface-wave determined focal mechanism is shown here.


  NODAL PLANES 

  
  STK=     244.99
  DIP=      70.00
 RAKE=      39.99
  
             OR
  
  STK=     138.98
  DIP=      52.85
 RAKE=     154.58
 
 
DEPTH = 11.0 km
 
Mw = 4.84
Best Fit 0.8660 - P-T axis plot gives solutions with FIT greater than FIT90

Surface-wave analysis

Surface wave analysis was performed using codes from Computer Programs in Seismology, specifically the multiple filter analysis program do_mft and the surface-wave radiation pattern search program srfgrd96.

Data preparation

Digital data were collected, instrument response removed and traces converted to Z, R an T components. Multiple filter analysis was applied to the Z and T traces to obtain the Rayleigh- and Love-wave spectral amplitudes, respectively. These were input to the search program which examined all depths between 1 and 25 km and all possible mechanisms.
Best mechanism fit as a function of depth. The preferred depth is given above. Lower hemisphere projection

Pressure-tension axis trends. Since the surface-wave spectra search does not distinguish between P and T axes and since there is a 180 ambiguity in strike, all possible P and T axes are plotted. First motion data and waveforms will be used to select the preferred mechanism. The purpose of this plot is to provide an idea of the possible range of solutions. The P and T-axes for all mechanisms with goodness of fit greater than 0.9 FITMAX (above) are plotted here.


Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to the Love and Rayleigh wave radiation patterns. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. Because of the symmetry of the spectral amplitude rediation patterns, only strikes from 0-180 degrees are sampled.

Love-wave radiation patterns

Rayleigh-wave radiation patterns