The ANSS event ID is ak008cbfae65 and the event page is at https://earthquake.usgs.gov/earthquakes/eventpage/ak008cbfae65/executive.
2008/09/24 12:19:52 63.413 -150.060 6.5 3.5 Alaska
USGS/SLU Moment Tensor Solution ENS 2008/09/24 12:19:52:0 63.41 -150.06 6.5 3.5 Alaska Stations used: AK.BPAW AK.COLD AK.MCK AK.PAX AK.PPLA AT.PMR AT.SVW2 IU.COLA US.EGAK Filtering commands used: hp c 0.02 n 3 lp c 0.05 n 3 Best Fitting Double Couple Mo = 1.97e+22 dyne-cm Mw = 4.13 Z = 9 km Plane Strike Dip Rake NP1 210 55 45 NP2 90 55 135 Principal Axes: Axis Value Plunge Azimuth T 1.97e+22 55 60 N 0.00e+00 35 240 P -1.97e+22 0 330 Moment Tensor: (dyne-cm) Component Value Mxx -1.32e+22 Mxy 1.14e+22 Mxz 4.54e+21 Myy 6.47e+19 Myz 8.13e+21 Mzz 1.31e+22 -------------- P -----------------### -- ------------########### ----------------############## ---------------################### ---------------##################### --------------######################## --------------############ ########### ------------############## T ########### ------------############### ############ ------------############################## #----------##############################- ###-------#############################--- ####-----###########################---- ################################-------- #######------############------------- ######------------------------------ #####----------------------------- ###--------------------------- ###------------------------- ---------------------- -------------- Global CMT Convention Moment Tensor: R T P 1.31e+22 4.54e+21 -8.13e+21 4.54e+21 -1.32e+22 -1.14e+22 -8.13e+21 -1.14e+22 6.47e+19 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20080924121952/index.html |
STK = 210 DIP = 55 RAKE = 45 MW = 4.13 HS = 9.0
The NDK file is 20080924121952.ndk The waveform inversion is preferred.
The following compares this source inversion to those provided by others. The purpose is to look for major differences and also to note slight differences that might be inherent to the processing procedure. For completeness the USGS/SLU solution is repeated from above.
USGS/SLU Moment Tensor Solution ENS 2008/09/24 12:19:52:0 63.41 -150.06 6.5 3.5 Alaska Stations used: AK.BPAW AK.COLD AK.MCK AK.PAX AK.PPLA AT.PMR AT.SVW2 IU.COLA US.EGAK Filtering commands used: hp c 0.02 n 3 lp c 0.05 n 3 Best Fitting Double Couple Mo = 1.97e+22 dyne-cm Mw = 4.13 Z = 9 km Plane Strike Dip Rake NP1 210 55 45 NP2 90 55 135 Principal Axes: Axis Value Plunge Azimuth T 1.97e+22 55 60 N 0.00e+00 35 240 P -1.97e+22 0 330 Moment Tensor: (dyne-cm) Component Value Mxx -1.32e+22 Mxy 1.14e+22 Mxz 4.54e+21 Myy 6.47e+19 Myz 8.13e+21 Mzz 1.31e+22 -------------- P -----------------### -- ------------########### ----------------############## ---------------################### ---------------##################### --------------######################## --------------############ ########### ------------############## T ########### ------------############### ############ ------------############################## #----------##############################- ###-------#############################--- ####-----###########################---- ################################-------- #######------############------------- ######------------------------------ #####----------------------------- ###--------------------------- ###------------------------- ---------------------- -------------- Global CMT Convention Moment Tensor: R T P 1.31e+22 4.54e+21 -8.13e+21 4.54e+21 -1.32e+22 -1.14e+22 -8.13e+21 -1.14e+22 6.47e+19 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20080924121952/index.html |
|
Given the availability of digital waveforms for determination of the moment tensor, this section documents the added processing leading to mLg, if appropriate to the region, and ML by application of the respective IASPEI formulae. As a research study, the linear distance term of the IASPEI formula for ML is adjusted to remove a linear distance trend in residuals to give a regionally defined ML. The defined ML uses horizontal component recordings, but the same procedure is applied to the vertical components since there may be some interest in vertical component ground motions. Residual plots versus distance may indicate interesting features of ground motion scaling in some distance ranges. A residual plot of the regionalized magnitude is given as a function of distance and azimuth, since data sets may transcend different wave propagation provinces.
Left: ML computed using the IASPEI formula for Horizontal components. Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
Left: ML computed using the IASPEI formula for Vertical components (research). Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
![]() |
The focal mechanism was determined using broadband seismic waveforms. The location of the event (star) and the stations used for (red) the waveform inversion are shown in the next figure.
![]() |
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green's functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
hp c 0.02 n 3 lp c 0.05 n 3The results of this grid search are as follow:
DEPTH STK DIP RAKE MW FIT WVFGRD96 0.5 185 35 -15 4.02 0.4421 WVFGRD96 1.0 185 30 -15 4.07 0.4476 WVFGRD96 2.0 190 35 -15 4.07 0.4494 WVFGRD96 3.0 195 35 -10 4.08 0.4550 WVFGRD96 4.0 200 40 5 4.07 0.4714 WVFGRD96 5.0 205 50 25 4.08 0.5027 WVFGRD96 6.0 205 55 35 4.10 0.5451 WVFGRD96 7.0 205 55 35 4.11 0.5766 WVFGRD96 8.0 210 55 40 4.12 0.5908 WVFGRD96 9.0 210 55 45 4.13 0.5953 WVFGRD96 10.0 210 55 40 4.14 0.5938 WVFGRD96 11.0 210 55 35 4.13 0.5839 WVFGRD96 12.0 205 60 35 4.13 0.5710 WVFGRD96 13.0 205 60 35 4.12 0.5559 WVFGRD96 14.0 205 60 35 4.12 0.5384 WVFGRD96 15.0 205 60 30 4.11 0.5192 WVFGRD96 16.0 205 60 30 4.11 0.5017 WVFGRD96 17.0 205 60 30 4.11 0.4844 WVFGRD96 18.0 200 70 40 4.11 0.4736 WVFGRD96 19.0 200 70 40 4.11 0.4659 WVFGRD96 20.0 200 70 40 4.13 0.4552 WVFGRD96 21.0 200 70 40 4.13 0.4462 WVFGRD96 22.0 200 70 40 4.14 0.4363 WVFGRD96 23.0 200 75 40 4.14 0.4264 WVFGRD96 24.0 200 75 40 4.14 0.4169 WVFGRD96 25.0 200 75 40 4.14 0.4071 WVFGRD96 26.0 195 80 40 4.14 0.3971 WVFGRD96 27.0 195 80 40 4.14 0.3881 WVFGRD96 28.0 195 80 40 4.15 0.3788 WVFGRD96 29.0 195 80 35 4.15 0.3702 WVFGRD96 30.0 195 80 35 4.15 0.3616 WVFGRD96 31.0 195 85 35 4.16 0.3536 WVFGRD96 32.0 195 85 35 4.16 0.3459 WVFGRD96 33.0 195 85 35 4.17 0.3379 WVFGRD96 34.0 195 85 35 4.17 0.3300 WVFGRD96 35.0 195 85 30 4.18 0.3223 WVFGRD96 36.0 195 85 30 4.18 0.3151 WVFGRD96 37.0 10 90 -30 4.19 0.3047 WVFGRD96 38.0 195 80 40 4.17 0.3016 WVFGRD96 39.0 195 80 40 4.17 0.2960 WVFGRD96 40.0 195 80 45 4.26 0.2890 WVFGRD96 41.0 95 60 -20 4.26 0.2889 WVFGRD96 42.0 95 60 -20 4.27 0.2876 WVFGRD96 43.0 95 60 -15 4.27 0.2863 WVFGRD96 44.0 95 60 -15 4.28 0.2847 WVFGRD96 45.0 95 60 -15 4.28 0.2834 WVFGRD96 46.0 95 65 -15 4.28 0.2819 WVFGRD96 47.0 95 65 -15 4.29 0.2811 WVFGRD96 48.0 95 65 -15 4.29 0.2803 WVFGRD96 49.0 95 65 -15 4.30 0.2786 WVFGRD96 50.0 95 65 -15 4.30 0.2783
The best solution is
WVFGRD96 9.0 210 55 45 4.13 0.5953
The mechanism corresponding to the best fit is
![]() |
|
The best fit as a function of depth is given in the following figure:
![]() |
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed, the velocity model used in the predictions may not be perfect and the epicentral parameters may be be off. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
hp c 0.02 n 3 lp c 0.05 n 3
![]() |
Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated. The time scale is relative to the first trace sample. |
![]() |
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to the waveforms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
The CUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows (The format is in the model96 format of Computer Programs in Seismology).
MODEL.01 CUS Model with Q from simple gamma values ISOTROPIC KGS FLAT EARTH 1-D CONSTANT VELOCITY LINE08 LINE09 LINE10 LINE11 H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS 1.0000 5.0000 2.8900 2.5000 0.172E-02 0.387E-02 0.00 0.00 1.00 1.00 9.0000 6.1000 3.5200 2.7300 0.160E-02 0.363E-02 0.00 0.00 1.00 1.00 10.0000 6.4000 3.7000 2.8200 0.149E-02 0.336E-02 0.00 0.00 1.00 1.00 20.0000 6.7000 3.8700 2.9020 0.000E-04 0.000E-04 0.00 0.00 1.00 1.00 0.0000 8.1500 4.7000 3.3640 0.194E-02 0.431E-02 0.00 0.00 1.00 1.00