The ANSS event ID is nn00242164 and the event page is at https://earthquake.usgs.gov/earthquakes/eventpage/nn00242164/executive.
2008/04/24 22:55:48 39.530 -119.933 2.9 4.1 Nevada
USGS/SLU Moment Tensor Solution ENS 2008/04/24 22:55:48:0 39.53 -119.93 2.9 4.1 Nevada Stations used: BK.CMB BK.HUMO BK.MOD CI.ISA TA.G06A TA.G07A TA.G08A TA.G10A TA.H06A TA.H08A TA.H09A TA.H11A TA.I07A TA.I09A TA.I10A TA.I11A TA.I12A TA.J08A TA.J09A TA.J10A TA.J11A TA.J13A TA.K10A TA.K11A TA.K12A TA.L10A TA.L11A TA.L12A TA.L14A TA.M10A TA.M11A TA.M12A TA.M13A TA.M15A TA.N10A TA.N11A TA.N12A TA.N13A TA.N15A TA.O11A TA.O12A TA.O13A TA.O15A TA.P10A TA.P11A TA.P12A TA.P13A TA.P14A TA.P15A TA.Q10A TA.Q11A TA.Q12A TA.Q13A TA.Q14A TA.Q15A TA.R10A TA.R11A TA.R12A TA.R13A TA.R14A TA.R15A TA.S10A TA.S11A TA.S12A TA.S13A TA.T11A TA.T12A TA.T13A TA.T14A TA.U10A TA.U11A TA.U12A TA.U13A TA.U14A TA.V11A TA.V12A TA.V13A TA.W12A US.WVOR Filtering commands used: cut o DIST/3.3 -40 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.07 n 3 Best Fitting Double Couple Mo = 3.31e+22 dyne-cm Mw = 4.28 Z = 10 km Plane Strike Dip Rake NP1 245 85 25 NP2 153 65 174 Principal Axes: Axis Value Plunge Azimuth T 3.31e+22 21 112 N 0.00e+00 65 256 P -3.31e+22 14 16 Moment Tensor: (dyne-cm) Component Value Mxx -2.49e+22 Mxy -1.83e+22 Mxz -1.14e+22 Myy 2.25e+22 Myz 8.19e+21 Mzz 2.43e+21 ---------- - #------------- P ----- ####------------- -------- #####------------------------- #######--------------------------- ########---------------------------- #########---------------------------## ###########---------------------######## ###########----------------############# #############-----------################## ##############------###################### ##############--########################## ############---########################### ########-------################### ### #####-----------################## T ### #----------------################ ## -----------------################### ------------------################ -----------------############# -------------------######### -------------------### -------------- Global CMT Convention Moment Tensor: R T P 2.43e+21 -1.14e+22 -8.19e+21 -1.14e+22 -2.49e+22 1.83e+22 -8.19e+21 1.83e+22 2.25e+22 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20080424225548/index.html |
STK = 245 DIP = 85 RAKE = 25 MW = 4.28 HS = 10.0
The NDK file is 20080424225548.ndk The waveform inversion is preferred.
The following compares this source inversion to those provided by others. The purpose is to look for major differences and also to note slight differences that might be inherent to the processing procedure. For completeness the USGS/SLU solution is repeated from above.
USGS/SLU Moment Tensor Solution ENS 2008/04/24 22:55:48:0 39.53 -119.93 2.9 4.1 Nevada Stations used: BK.CMB BK.HUMO BK.MOD CI.ISA TA.G06A TA.G07A TA.G08A TA.G10A TA.H06A TA.H08A TA.H09A TA.H11A TA.I07A TA.I09A TA.I10A TA.I11A TA.I12A TA.J08A TA.J09A TA.J10A TA.J11A TA.J13A TA.K10A TA.K11A TA.K12A TA.L10A TA.L11A TA.L12A TA.L14A TA.M10A TA.M11A TA.M12A TA.M13A TA.M15A TA.N10A TA.N11A TA.N12A TA.N13A TA.N15A TA.O11A TA.O12A TA.O13A TA.O15A TA.P10A TA.P11A TA.P12A TA.P13A TA.P14A TA.P15A TA.Q10A TA.Q11A TA.Q12A TA.Q13A TA.Q14A TA.Q15A TA.R10A TA.R11A TA.R12A TA.R13A TA.R14A TA.R15A TA.S10A TA.S11A TA.S12A TA.S13A TA.T11A TA.T12A TA.T13A TA.T14A TA.U10A TA.U11A TA.U12A TA.U13A TA.U14A TA.V11A TA.V12A TA.V13A TA.W12A US.WVOR Filtering commands used: cut o DIST/3.3 -40 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.07 n 3 Best Fitting Double Couple Mo = 3.31e+22 dyne-cm Mw = 4.28 Z = 10 km Plane Strike Dip Rake NP1 245 85 25 NP2 153 65 174 Principal Axes: Axis Value Plunge Azimuth T 3.31e+22 21 112 N 0.00e+00 65 256 P -3.31e+22 14 16 Moment Tensor: (dyne-cm) Component Value Mxx -2.49e+22 Mxy -1.83e+22 Mxz -1.14e+22 Myy 2.25e+22 Myz 8.19e+21 Mzz 2.43e+21 ---------- - #------------- P ----- ####------------- -------- #####------------------------- #######--------------------------- ########---------------------------- #########---------------------------## ###########---------------------######## ###########----------------############# #############-----------################## ##############------###################### ##############--########################## ############---########################### ########-------################### ### #####-----------################## T ### #----------------################ ## -----------------################### ------------------################ -----------------############# -------------------######### -------------------### -------------- Global CMT Convention Moment Tensor: R T P 2.43e+21 -1.14e+22 -8.19e+21 -1.14e+22 -2.49e+22 1.83e+22 -8.19e+21 1.83e+22 2.25e+22 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20080424225548/index.html |
UCB Seismological Laboratory Inversion method: complete waveform Stations used: BK.ORV BK.CMB BK.MNRC BK.PKD Berkeley Moment Tensor Solution Best Fitting Double-Couple: Mo = 3.80E+22 Dyne-cm Mw = 4.32 Z = 5 km Plane Strike Rake Dip NP1 150 -168 83 NP2 59 -7 78 Event Date/Time: 04/24/2008 22:55:49:290 Event ID: 40215981 ----------- ----------------------- #------------------- -------- ####------------------- P ----------- #######------------------ ------------- ##########----------------------------------- ###########------------------------------------ #############------------------------------------ ################-----------------------------------## ##################---------------------------------#### ###################------------------------------###### ###################---------------------------######### T ####################------------------------############ #####################--------------------############### #########################-----------------################# ##########################-------------#################### ############################----------####################### ############################------######################### #############################--############################ ############################--############################# #########################------############################ ####################-----------########################## ###############-----------------####################### ###########----------------------###################### ####-----------------------------#################### --------------------------------################# ---------------------------------############## ---------------------------------############ --------------------------------######### --------------------------------##### ------------------------------# ----------------------- ----------- Lower Hemisphere Equiangle Projection Deviatoric Solution: Principal Axes: Axis Value Plunge Azimuth T 3.899 4 284 N -0.169 76 179 P -3.730 13 15 Source Composition: Type Percent DC 91.3 CLVD 8.7 Iso 0.0 Moment Tensor: Scale = 10**22 Dyne-cm Component Value Mxx -3.091 Mxy -1.766 Mxz -0.715 Myy 3.435 Myz -0.456 Mzz -0.344 ----------- ----------------------- #------------------- -------- #####------------------ P ----------- #######------------------ ------------- ##########----------------------------------- ############----------------------------------- ##############----------------------------------- ################-----------------------------------## ##################--------------------------------##### ###################-----------------------------####### ###################---------------------------######### T ####################------------------------############ ####################---------------------############### ########################------------------################# #########################---------------################### ###########################------------###################### ##########################----------####################### ##########################--------######################### #########################--------########################## #######################----------########################## ###################--------------######################## ###############------------------###################### ###########-----------------------##################### #####-----------------------------################### ---------------------------------################ ---------------------------------############## ---------------------------------############ --------------------------------######### --------------------------------##### ------------------------------# ----------------------- ----------- Lower Hemisphere Equiangle Projection |
Given the availability of digital waveforms for determination of the moment tensor, this section documents the added processing leading to mLg, if appropriate to the region, and ML by application of the respective IASPEI formulae. As a research study, the linear distance term of the IASPEI formula for ML is adjusted to remove a linear distance trend in residuals to give a regionally defined ML. The defined ML uses horizontal component recordings, but the same procedure is applied to the vertical components since there may be some interest in vertical component ground motions. Residual plots versus distance may indicate interesting features of ground motion scaling in some distance ranges. A residual plot of the regionalized magnitude is given as a function of distance and azimuth, since data sets may transcend different wave propagation provinces.
Left: ML computed using the IASPEI formula for Horizontal components. Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
Left: ML computed using the IASPEI formula for Vertical components (research). Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
![]() |
The focal mechanism was determined using broadband seismic waveforms. The location of the event (star) and the stations used for (red) the waveform inversion are shown in the next figure.
![]() |
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green's functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
cut o DIST/3.3 -40 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.07 n 3The results of this grid search are as follow:
DEPTH STK DIP RAKE MW FIT WVFGRD96 0.5 65 85 20 3.97 0.5052 WVFGRD96 1.0 65 80 10 3.99 0.5341 WVFGRD96 2.0 65 80 10 4.06 0.5987 WVFGRD96 3.0 60 80 -15 4.11 0.6426 WVFGRD96 4.0 60 85 -15 4.14 0.6628 WVFGRD96 5.0 245 80 15 4.17 0.6720 WVFGRD96 6.0 60 90 -25 4.20 0.6778 WVFGRD96 7.0 245 85 20 4.21 0.6905 WVFGRD96 8.0 60 85 -30 4.25 0.7024 WVFGRD96 9.0 60 90 -25 4.27 0.7066 WVFGRD96 10.0 245 85 25 4.28 0.7126 WVFGRD96 11.0 245 85 25 4.29 0.7121 WVFGRD96 12.0 65 90 -25 4.30 0.7053 WVFGRD96 13.0 245 85 20 4.31 0.7022 WVFGRD96 14.0 245 85 20 4.32 0.6940 WVFGRD96 15.0 65 90 -20 4.32 0.6802 WVFGRD96 16.0 65 85 20 4.33 0.6740 WVFGRD96 17.0 245 90 -20 4.34 0.6634 WVFGRD96 18.0 65 85 20 4.35 0.6604 WVFGRD96 19.0 245 90 -20 4.35 0.6471 WVFGRD96 20.0 65 85 20 4.36 0.6402 WVFGRD96 21.0 65 85 20 4.37 0.6280 WVFGRD96 22.0 245 90 -20 4.37 0.6116 WVFGRD96 23.0 65 85 20 4.38 0.6006 WVFGRD96 24.0 245 90 -20 4.38 0.5828 WVFGRD96 25.0 65 85 20 4.39 0.5701 WVFGRD96 26.0 245 90 -25 4.39 0.5513 WVFGRD96 27.0 65 85 20 4.40 0.5377 WVFGRD96 28.0 245 90 -25 4.40 0.5195 WVFGRD96 29.0 65 85 25 4.41 0.5050
The best solution is
WVFGRD96 10.0 245 85 25 4.28 0.7126
The mechanism corresponding to the best fit is
![]() |
|
The best fit as a function of depth is given in the following figure:
![]() |
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed, the velocity model used in the predictions may not be perfect and the epicentral parameters may be be off. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
cut o DIST/3.3 -40 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.07 n 3
![]() |
Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated. The time scale is relative to the first trace sample. |
![]() |
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to the waveforms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
The following figure shows the stations used in the grid search for the best focal mechanism to fit the surface-wave spectral amplitudes of the Love and Rayleigh waves.
![]() |
|
The surface-wave determined focal mechanism is shown here.
NODAL PLANES STK= 58.53 DIP= 76.43 RAKE= -25.77 OR STK= 154.99 DIP= 65.00 RAKE= -164.99 DEPTH = 7.0 km Mw = 4.30 Best Fit 0.88945 - P-T axis plot gives solutions with FIT greater than FIT90
![]() |
Surface wave analysis was performed using codes from Computer Programs in Seismology, specifically the multiple filter analysis program do_mft and the surface-wave radiation pattern search program srfgrd96.
Digital data were collected, instrument response removed and traces converted
to Z, R an T components. Multiple filter analysis was applied to the Z and T traces to obtain the Rayleigh- and Love-wave spectral amplitudes, respectively.
These were input to the search program which examined all depths between 1 and 25 km
and all possible mechanisms.
![]() |
|
![]() |
Pressure-tension axis trends. Since the surface-wave spectra search does not distinguish between P and T axes and since there is a 180 ambiguity in strike, all possible P and T axes are plotted. First motion data and waveforms will be used to select the preferred mechanism. The purpose of this plot is to provide an idea of the possible range of solutions. The P and T-axes for all mechanisms with goodness of fit greater than 0.9 FITMAX (above) are plotted here. |
![]() |
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to the Love and Rayleigh wave radiation patterns. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. Because of the symmetry of the spectral amplitude rediation patterns, only strikes from 0-180 degrees are sampled. |
![]() |
![]() |
The WUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows (The format is in the model96 format of Computer Programs in Seismology).
MODEL.01 Model after 8 iterations ISOTROPIC KGS FLAT EARTH 1-D CONSTANT VELOCITY LINE08 LINE09 LINE10 LINE11 H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS 1.9000 3.4065 2.0089 2.2150 0.302E-02 0.679E-02 0.00 0.00 1.00 1.00 6.1000 5.5445 3.2953 2.6089 0.349E-02 0.784E-02 0.00 0.00 1.00 1.00 13.0000 6.2708 3.7396 2.7812 0.212E-02 0.476E-02 0.00 0.00 1.00 1.00 19.0000 6.4075 3.7680 2.8223 0.111E-02 0.249E-02 0.00 0.00 1.00 1.00 0.0000 7.9000 4.6200 3.2760 0.164E-10 0.370E-10 0.00 0.00 1.00 1.00