The ANSS event ID is nn00234425 and the event page is at https://earthquake.usgs.gov/earthquakes/eventpage/nn00234425/executive.
2008/02/21 14:16:05 41.144 -114.872 7.9 5.9 Nevada
USGS/SLU Moment Tensor Solution ENS 2008/02/21 14:16:05:0 41.14 -114.87 7.9 5.9 Nevada Stations used: IW.DCID1 IW.IMW IW.LOHW IW.MOOW IW.REDW IW.RRI2 IW.SNOW IW.TPAW NN.BEK NN.WCN TA.G13A TA.G14A TA.G15A TA.H08A TA.H09A TA.H10A TA.H11A TA.H12A TA.H13A TA.H15A TA.H16A TA.I08A TA.I09A TA.I11A TA.I12A TA.I13A TA.I14A TA.I15A TA.I16A TA.I17A TA.J07A TA.J08A TA.J10A TA.J11A TA.J12A TA.J13A TA.J14A TA.J15A TA.J16A TA.J17A TA.J18A TA.K07A TA.K08A TA.K09A TA.K10A TA.K12A TA.K13A TA.K14A TA.K15A TA.K16A TA.K17A TA.K18A TA.L07A TA.L08A TA.L09A TA.L10A TA.L11A TA.L12A TA.L13A TA.L14A TA.L15A TA.L16A TA.L17A TA.L18A TA.L19A TA.M07A TA.M09A TA.M10A TA.M11A TA.M13A TA.M14A TA.M15A TA.M16A TA.M17A TA.M18A TA.M19A TA.N06A TA.N07B TA.N08A TA.N09A TA.N10A TA.N11A TA.N13A TA.N14A TA.N15A TA.N16A TA.N17A TA.O06A TA.O07A TA.O08A TA.O09A TA.O10A TA.O11A TA.O12A TA.O13A TA.O15A TA.O17A TA.O18A TA.O19A TA.P06A TA.P07A TA.P08A TA.P09A TA.P10A TA.P11A TA.P12A TA.P14A TA.P15A TA.P16A TA.P17A TA.P18A TA.Q07A TA.Q08A TA.Q09A TA.Q10A TA.Q11A TA.Q12A TA.Q13A TA.Q14A TA.Q15A TA.Q16A TA.R06C TA.R08A TA.R09A TA.R10A TA.R11A TA.R12A TA.R13A TA.R14A TA.R15A TA.R16A TA.R17A TA.S09A TA.S10A TA.S11A TA.S12A TA.S13A TA.S14A TA.S15A TA.T11A TA.T12A TA.T13A TA.T14A TA.T15A US.AHID US.BMO US.BW06 US.DUG US.ELK US.HLID US.WVOR UU.SRU Filtering commands used: hp c 0.01 n 3 lp c 0.05 n 3 Best Fitting Double Couple Mo = 9.23e+24 dyne-cm Mw = 5.91 Z = 11 km Plane Strike Dip Rake NP1 210 50 -90 NP2 30 40 -90 Principal Axes: Axis Value Plunge Azimuth T 9.23e+24 5 300 N 0.00e+00 -0 210 P -9.23e+24 85 120 Moment Tensor: (dyne-cm) Component Value Mxx 2.27e+24 Mxy -3.93e+24 Mxz 8.01e+23 Myy 6.81e+24 Myz -1.39e+24 Mzz -9.09e+24 ############## ##################---- ################----------## ##############--------------## #############----------------#### T ###########-------------------#### ##########--------------------##### ############----------------------###### ###########-----------------------###### ###########------------------------####### ##########----------- -----------####### ##########----------- P ----------######## #########------------ ---------######### ########------------------------######## ########-----------------------######### ######----------------------########## #####---------------------########## #####------------------########### ###----------------########### ###------------############# -------############### ############## Global CMT Convention Moment Tensor: R T P -9.09e+24 8.01e+23 1.39e+24 8.01e+23 2.27e+24 3.93e+24 1.39e+24 3.93e+24 6.81e+24 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20080221141605/index.html |
STK = 30 DIP = 40 RAKE = -90 MW = 5.91 HS = 11.0
The NDK file is 20080221141605.ndk The waveform inversion is preferred.
The following compares this source inversion to those provided by others. The purpose is to look for major differences and also to note slight differences that might be inherent to the processing procedure. For completeness the USGS/SLU solution is repeated from above.
USGS/SLU Moment Tensor Solution ENS 2008/02/21 14:16:05:0 41.14 -114.87 7.9 5.9 Nevada Stations used: IW.DCID1 IW.IMW IW.LOHW IW.MOOW IW.REDW IW.RRI2 IW.SNOW IW.TPAW NN.BEK NN.WCN TA.G13A TA.G14A TA.G15A TA.H08A TA.H09A TA.H10A TA.H11A TA.H12A TA.H13A TA.H15A TA.H16A TA.I08A TA.I09A TA.I11A TA.I12A TA.I13A TA.I14A TA.I15A TA.I16A TA.I17A TA.J07A TA.J08A TA.J10A TA.J11A TA.J12A TA.J13A TA.J14A TA.J15A TA.J16A TA.J17A TA.J18A TA.K07A TA.K08A TA.K09A TA.K10A TA.K12A TA.K13A TA.K14A TA.K15A TA.K16A TA.K17A TA.K18A TA.L07A TA.L08A TA.L09A TA.L10A TA.L11A TA.L12A TA.L13A TA.L14A TA.L15A TA.L16A TA.L17A TA.L18A TA.L19A TA.M07A TA.M09A TA.M10A TA.M11A TA.M13A TA.M14A TA.M15A TA.M16A TA.M17A TA.M18A TA.M19A TA.N06A TA.N07B TA.N08A TA.N09A TA.N10A TA.N11A TA.N13A TA.N14A TA.N15A TA.N16A TA.N17A TA.O06A TA.O07A TA.O08A TA.O09A TA.O10A TA.O11A TA.O12A TA.O13A TA.O15A TA.O17A TA.O18A TA.O19A TA.P06A TA.P07A TA.P08A TA.P09A TA.P10A TA.P11A TA.P12A TA.P14A TA.P15A TA.P16A TA.P17A TA.P18A TA.Q07A TA.Q08A TA.Q09A TA.Q10A TA.Q11A TA.Q12A TA.Q13A TA.Q14A TA.Q15A TA.Q16A TA.R06C TA.R08A TA.R09A TA.R10A TA.R11A TA.R12A TA.R13A TA.R14A TA.R15A TA.R16A TA.R17A TA.S09A TA.S10A TA.S11A TA.S12A TA.S13A TA.S14A TA.S15A TA.T11A TA.T12A TA.T13A TA.T14A TA.T15A US.AHID US.BMO US.BW06 US.DUG US.ELK US.HLID US.WVOR UU.SRU Filtering commands used: hp c 0.01 n 3 lp c 0.05 n 3 Best Fitting Double Couple Mo = 9.23e+24 dyne-cm Mw = 5.91 Z = 11 km Plane Strike Dip Rake NP1 210 50 -90 NP2 30 40 -90 Principal Axes: Axis Value Plunge Azimuth T 9.23e+24 5 300 N 0.00e+00 -0 210 P -9.23e+24 85 120 Moment Tensor: (dyne-cm) Component Value Mxx 2.27e+24 Mxy -3.93e+24 Mxz 8.01e+23 Myy 6.81e+24 Myz -1.39e+24 Mzz -9.09e+24 ############## ##################---- ################----------## ##############--------------## #############----------------#### T ###########-------------------#### ##########--------------------##### ############----------------------###### ###########-----------------------###### ###########------------------------####### ##########----------- -----------####### ##########----------- P ----------######## #########------------ ---------######### ########------------------------######## ########-----------------------######### ######----------------------########## #####---------------------########## #####------------------########### ###----------------########### ###------------############# -------############### ############## Global CMT Convention Moment Tensor: R T P -9.09e+24 8.01e+23 1.39e+24 8.01e+23 2.27e+24 3.93e+24 1.39e+24 3.93e+24 6.81e+24 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20080221141605/index.html |
USGS Body-Wave Moment Tensor Solution 08/02/21 14:16:03.82 NEVADA Epicenter: 41.083 -114.730 MW 5.8 USGS MOMENT TENSOR SOLUTION Depth 7 No. of sta: 91 Moment Tensor; Scale 10**17 Nm Mrr=-6.82 Mtt= 2.12 Mpp= 4.70 Mrt= 1.59 Mrp= 2.38 Mtp= 1.19 Principal axes: T Val= 5.79 Plg=12 Azm=293 N 1.69 3 23 P -7.48 76 128 Best Double Couple:Mo=6.8*10**17 NP1:Strike=206 Dip=58 Slip= -86 NP2: 19 33 -96 ####### ################# ##############-----## #############---------### #############------------#### # #########-------------##### # T ########---------------#### ## #######----------------##### ###########-----------------##### ##########------- --------##### #########-------- P -------###### #########-------- -------###### #######------------------###### #######-----------------####### ######----------------####### ####--------------####### ##------------####### #-------######### ####### |
February 21, 2008, NEVADA, MW=6.0 Goran Ekstrom CENTROID-MOMENT-TENSOR SOLUTION GCMT EVENT: C200802211416A DATA: II IU CU IC G GE L.P.BODY WAVES: 92S, 209C, T= 40 MANTLE WAVES: 83S, 120C, T=125 SURFACE WAVES: 99S, 252C, T= 50 TIMESTAMP: Q-20080221151936 CENTROID LOCATION: ORIGIN TIME: 14:16:10.1 0.1 LAT:41.23N 0.01;LON:114.86W 0.01 DEP: 14.1 0.2;TRIANG HDUR: 2.5 MOMENT TENSOR: SCALE 10**25 D-CM RR=-1.230 0.010; TT= 0.245 0.008 PP= 0.990 0.009; RT=-0.078 0.018 RP= 0.125 0.018; TP= 0.628 0.007 PRINCIPAL AXES: 1.(T) VAL= 1.350;PLG= 2;AZM=300 2.(N) -0.098; 7; 209 3.(P) -1.247; 83; 43 BEST DBLE.COUPLE:M0= 1.30*10**25 NP1: STRIKE= 36;DIP=44;SLIP= -81 NP2: STRIKE=203;DIP=47;SLIP= -99 ########### ###########-------- ##########------------# #########--------------### T #######-----------------### ######------------------#### ########-------------------#### ########-------- ---------##### ########-------- P --------###### #######--------- -------####### #######-------------------####### ######-----------------######## ######----------------######### #####--------------########## ####------------########### ###--------############ --################# ########### |
February 21, 2008, NEVADA, MW=6.0 Goran Ekstrom CENTROID-MOMENT-TENSOR SOLUTION GCMT EVENT: C200802211416A DATA: II IU CU IC G GE L.P.BODY WAVES: 92S, 209C, T= 40 MANTLE WAVES: 83S, 120C, T=125 SURFACE WAVES: 99S, 252C, T= 50 TIMESTAMP: Q-20080221151936 CENTROID LOCATION: ORIGIN TIME: 14:16:10.1 0.1 LAT:41.23N 0.01;LON:114.86W 0.01 DEP: 14.1 0.2;TRIANG HDUR: 2.5 MOMENT TENSOR: SCALE 10**25 D-CM RR=-1.230 0.010; TT= 0.245 0.008 PP= 0.990 0.009; RT=-0.078 0.018 RP= 0.125 0.018; TP= 0.628 0.007 PRINCIPAL AXES: 1.(T) VAL= 1.350;PLG= 2;AZM=300 2.(N) -0.098; 7; 209 3.(P) -1.247; 83; 43 BEST DBLE.COUPLE:M0= 1.30*10**25 NP1: STRIKE= 36;DIP=44;SLIP= -81 NP2: STRIKE=203;DIP=47;SLIP= -99 ########### ###########-------- ##########------------# #########--------------### T #######-----------------### ######------------------#### ########-------------------#### ########-------- ---------##### ########-------- P --------###### #######--------- -------####### #######-------------------####### ######-----------------######## ######----------------######### #####--------------########## ####------------########### ###--------############ --################# ########### |
UCB Seismological Laboratory Inversion method: complete waveform Stations used: CMB KCC ORV Berkeley Moment Tensor Solution Best Fitting Double-Couple: Mo = 1.04E+25 Dyne-cm Mw = 5.95 Z = 11 Plane Strike Rake Dip NP1 228 -71 65 NP2 10 -124 31 Principal Axes: Axis Value Plunge Azimuth T 10.400 18 305 N 0.000 17 40 P -10.400 65 171 Event Date/Time: February 21, 2008 at 14:16:05 UTC Event ID: usus2008nsa9 Moment Tensor: Scale = 10**24 Dyne-cm Component Value Mxx 1.254 Mxy -4.116 Mxz 5.612 Myy 6.359 Myz -3.121 Mzz -7.613 ####### ################--- #####################---- ########################----- ###########################-##### ## ###################-----###### ### T ###############----------###### #### ############-------------####### #################----------------###### ################------------------####### ##############--------------------####### ############----------------------####### ###########-----------------------####### ##########---------- -----------####### #######------------ P ----------####### ######------------- ---------######## #####------------------------######## ###------------------------######## #------------------------######## ---------------------######## -----------------######## -----------######## ####### Lower Hemisphere Equiangle Projection |
USGS Centroid Moment Tensor Solution 08/02/21 14:16:03.82 NEVADA Epicenter: 41.083 -114.730 MW 6.0 USGS CENTROID MOMENT TENSOR 08/02/21 14:16:41.29 Centroid: 42.125 -113.949 Depth 10 No. of sta: 60 Moment Tensor; Scale 10**18 Nm Mrr=-1.12 Mtt= 0.26 Mpp= 0.85 Mrt= 0.29 Mrp=-0.60 Mtp= 0.53 Principal axes: T Val= 1.23 Plg= 9 Azm=116 N 0.16 20 22 P -1.40 66 229 Best Double Couple:Mo=1.3*10**18 NP1:Strike= 9 Dip=58 Slip=-114 NP2: 230 40 -55 ######- ############----- ###############------ #############-----####### ###########---------######### ##########------------######### ########--------------######### #######----------------########## ######-----------------########## #####------------------########## ####-------- -------########### ####-------- P -------########### ##--------- ------######## ##------------------######## T #-----------------######### ---------------########## ------------######### --------######### -###### |
|
Given the availability of digital waveforms for determination of the moment tensor, this section documents the added processing leading to mLg, if appropriate to the region, and ML by application of the respective IASPEI formulae. As a research study, the linear distance term of the IASPEI formula for ML is adjusted to remove a linear distance trend in residuals to give a regionally defined ML. The defined ML uses horizontal component recordings, but the same procedure is applied to the vertical components since there may be some interest in vertical component ground motions. Residual plots versus distance may indicate interesting features of ground motion scaling in some distance ranges. A residual plot of the regionalized magnitude is given as a function of distance and azimuth, since data sets may transcend different wave propagation provinces.
Left: ML computed using the IASPEI formula for Horizontal components. Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
Left: ML computed using the IASPEI formula for Vertical components (research). Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
![]() |
The focal mechanism was determined using broadband seismic waveforms. The location of the event (star) and the stations used for (red) the waveform inversion are shown in the next figure.
![]() |
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green's functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
hp c 0.01 n 3 lp c 0.05 n 3The results of this grid search are as follow:
DEPTH STK DIP RAKE MW FIT WVFGRD96 0.5 75 90 15 5.47 0.3480 WVFGRD96 1.0 255 90 -10 5.49 0.3692 WVFGRD96 2.0 75 75 -5 5.58 0.4315 WVFGRD96 3.0 70 50 -10 5.67 0.4634 WVFGRD96 4.0 70 45 -15 5.71 0.4994 WVFGRD96 5.0 70 45 -15 5.73 0.5362 WVFGRD96 6.0 65 45 -25 5.75 0.5714 WVFGRD96 7.0 50 40 -55 5.81 0.6128 WVFGRD96 8.0 45 35 -65 5.87 0.6595 WVFGRD96 9.0 205 50 -95 5.90 0.7102 WVFGRD96 10.0 35 40 -80 5.90 0.7386 WVFGRD96 11.0 30 40 -90 5.91 0.7403 WVFGRD96 12.0 35 40 -80 5.90 0.7245 WVFGRD96 13.0 35 40 -80 5.89 0.6981 WVFGRD96 14.0 50 45 -60 5.87 0.6700 WVFGRD96 15.0 65 55 -30 5.84 0.6500 WVFGRD96 16.0 70 60 -20 5.84 0.6350 WVFGRD96 17.0 70 65 -20 5.84 0.6216 WVFGRD96 18.0 70 65 -15 5.85 0.6096 WVFGRD96 19.0 70 65 -15 5.85 0.5972 WVFGRD96 20.0 75 70 -10 5.86 0.5847 WVFGRD96 21.0 75 70 -10 5.86 0.5730 WVFGRD96 22.0 75 70 -5 5.86 0.5602 WVFGRD96 23.0 75 75 5 5.87 0.5488 WVFGRD96 24.0 75 75 5 5.87 0.5372 WVFGRD96 25.0 75 75 5 5.88 0.5253 WVFGRD96 26.0 75 75 5 5.88 0.5131 WVFGRD96 27.0 75 75 5 5.89 0.5012 WVFGRD96 28.0 75 75 5 5.89 0.4894 WVFGRD96 29.0 75 80 5 5.90 0.4782
The best solution is
WVFGRD96 11.0 30 40 -90 5.91 0.7403
The mechanism corresponding to the best fit is
![]() |
|
The best fit as a function of depth is given in the following figure:
![]() |
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed, the velocity model used in the predictions may not be perfect and the epicentral parameters may be be off. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
hp c 0.01 n 3 lp c 0.05 n 3
![]() |
Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated. The time scale is relative to the first trace sample. |
![]() |
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to the waveforms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
The following figure shows the stations used in the grid search for the best focal mechanism to fit the surface-wave spectral amplitudes of the Love and Rayleigh waves.
![]() |
|
The surface-wave determined focal mechanism is shown here.
NODAL PLANES STK= 194.99 DIP= 55.00 RAKE= -104.99 OR STK= 40.01 DIP= 37.70 RAKE= -69.72 DEPTH = 10.0 km Mw = 5.97 Best Fit 0.8931 - P-T axis plot gives solutions with FIT greater than FIT90
![]() |
Surface wave analysis was performed using codes from Computer Programs in Seismology, specifically the multiple filter analysis program do_mft and the surface-wave radiation pattern search program srfgrd96.
Digital data were collected, instrument response removed and traces converted
to Z, R an T components. Multiple filter analysis was applied to the Z and T traces to obtain the Rayleigh- and Love-wave spectral amplitudes, respectively.
These were input to the search program which examined all depths between 1 and 25 km
and all possible mechanisms.
![]() |
|
![]() |
Pressure-tension axis trends. Since the surface-wave spectra search does not distinguish between P and T axes and since there is a 180 ambiguity in strike, all possible P and T axes are plotted. First motion data and waveforms will be used to select the preferred mechanism. The purpose of this plot is to provide an idea of the possible range of solutions. The P and T-axes for all mechanisms with goodness of fit greater than 0.9 FITMAX (above) are plotted here. |
![]() |
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to the Love and Rayleigh wave radiation patterns. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. Because of the symmetry of the spectral amplitude rediation patterns, only strikes from 0-180 degrees are sampled. |
![]() |
![]() |
The WUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows (The format is in the model96 format of Computer Programs in Seismology).
MODEL.01 Model after 8 iterations ISOTROPIC KGS FLAT EARTH 1-D CONSTANT VELOCITY LINE08 LINE09 LINE10 LINE11 H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS 1.9000 3.4065 2.0089 2.2150 0.302E-02 0.679E-02 0.00 0.00 1.00 1.00 6.1000 5.5445 3.2953 2.6089 0.349E-02 0.784E-02 0.00 0.00 1.00 1.00 13.0000 6.2708 3.7396 2.7812 0.212E-02 0.476E-02 0.00 0.00 1.00 1.00 19.0000 6.4075 3.7680 2.8223 0.111E-02 0.249E-02 0.00 0.00 1.00 1.00 0.0000 7.9000 4.6200 3.2760 0.164E-10 0.370E-10 0.00 0.00 1.00 1.00