The ANSS event ID is nc40204628 and the event page is at https://earthquake.usgs.gov/earthquakes/eventpage/nc40204628/executive.
2007/10/31 03:04:54 37.434 -121.774 9.7 5.45 California
USGS/SLU Moment Tensor Solution ENS 2007/10/31 03:04:54:0 37.43 -121.77 9.7 5.4 California Stations used: BK.BDM BK.CMB BK.CVS BK.FARB BK.HOPS BK.JCC BK.JRSC BK.KCC BK.MCCM BK.MNRC BK.ORV BK.PKD BK.SAO BK.WDC BK.WENL BK.YBH CI.CHF CI.CWC CI.DEC CI.DJJ CI.EDW2 CI.FUR CI.GRA CI.GSC CI.ISA CI.LRL CI.MLAC CI.MPM CI.MPP CI.MWC CI.PASC CI.PHL CI.RCT CI.SBC CI.SCZ2 CI.SHO CI.SLA CI.SMM CI.TIN CI.VCS CI.VES G.SCZ IM.NV31 LB.BMN LB.TPH NN.PAH NN.WCN TA.LAVA TA.M02C TA.M07A TA.M08A TA.N02C TA.N06A TA.N07B TA.N08A TA.N09A TA.O01C TA.O06A TA.O07A TA.O08A TA.P06A TA.P07A TA.P09A TA.Q07A TA.Q08A TA.Q09A TA.Q10A TA.R04C TA.R06C TA.R08A TA.R09A TA.R10A TA.S05C TA.S09A TA.S10A TA.S11A TA.T06C TA.U04C TA.U05C TA.U10A TA.V03C US.TPNV XQ.ME05 XQ.ME34 XQ.ME36 XQ.ME43 XQ.ME44 XQ.ME45 XQ.ME46 XQ.ME47 XQ.ME48 XQ.ME49 XQ.ME50 XQ.ME53 XQ.ME54 XQ.ME81 XQ.ME84 XQ.ME92 XQ.ME93 Filtering commands used: cut o DIST/3.3 -40 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.06 n 3 Best Fitting Double Couple Mo = 2.02e+24 dyne-cm Mw = 5.47 Z = 16 km Plane Strike Dip Rake NP1 235 80 -15 NP2 328 75 -170 Principal Axes: Axis Value Plunge Azimuth T 2.02e+24 3 282 N 0.00e+00 72 22 P -2.02e+24 18 191 Moment Tensor: (dyne-cm) Component Value Mxx -1.68e+24 Mxy -7.41e+23 Mxz 5.96e+23 Myy 1.86e+24 Myz -4.24e+21 Mzz -1.79e+23 -------------- ---------------------- ######---------------------- #########--------------------- #############--------------------- ###############---------------###### ##################----------########## ##################-----############### T ###################-################## ##################---################## ##################-------################# ###############-----------################ #############--------------############### ##########-----------------############# ########--------------------############ #####-----------------------########## ##-------------------------######### ---------------------------####### -------------------------##### --------- -------------### ------ P ------------- -- --------- Global CMT Convention Moment Tensor: R T P -1.79e+23 5.96e+23 4.24e+21 5.96e+23 -1.68e+24 7.41e+23 4.24e+21 7.41e+23 1.86e+24 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20071031030454/index.html |
STK = 235 DIP = 80 RAKE = -15 MW = 5.47 HS = 16.0
The NDK file is 20071031030454.ndk The waveform inversion is preferred.
The following compares this source inversion to those provided by others. The purpose is to look for major differences and also to note slight differences that might be inherent to the processing procedure. For completeness the USGS/SLU solution is repeated from above.
USGS/SLU Moment Tensor Solution ENS 2007/10/31 03:04:54:0 37.43 -121.77 9.7 5.4 California Stations used: BK.BDM BK.CMB BK.CVS BK.FARB BK.HOPS BK.JCC BK.JRSC BK.KCC BK.MCCM BK.MNRC BK.ORV BK.PKD BK.SAO BK.WDC BK.WENL BK.YBH CI.CHF CI.CWC CI.DEC CI.DJJ CI.EDW2 CI.FUR CI.GRA CI.GSC CI.ISA CI.LRL CI.MLAC CI.MPM CI.MPP CI.MWC CI.PASC CI.PHL CI.RCT CI.SBC CI.SCZ2 CI.SHO CI.SLA CI.SMM CI.TIN CI.VCS CI.VES G.SCZ IM.NV31 LB.BMN LB.TPH NN.PAH NN.WCN TA.LAVA TA.M02C TA.M07A TA.M08A TA.N02C TA.N06A TA.N07B TA.N08A TA.N09A TA.O01C TA.O06A TA.O07A TA.O08A TA.P06A TA.P07A TA.P09A TA.Q07A TA.Q08A TA.Q09A TA.Q10A TA.R04C TA.R06C TA.R08A TA.R09A TA.R10A TA.S05C TA.S09A TA.S10A TA.S11A TA.T06C TA.U04C TA.U05C TA.U10A TA.V03C US.TPNV XQ.ME05 XQ.ME34 XQ.ME36 XQ.ME43 XQ.ME44 XQ.ME45 XQ.ME46 XQ.ME47 XQ.ME48 XQ.ME49 XQ.ME50 XQ.ME53 XQ.ME54 XQ.ME81 XQ.ME84 XQ.ME92 XQ.ME93 Filtering commands used: cut o DIST/3.3 -40 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.06 n 3 Best Fitting Double Couple Mo = 2.02e+24 dyne-cm Mw = 5.47 Z = 16 km Plane Strike Dip Rake NP1 235 80 -15 NP2 328 75 -170 Principal Axes: Axis Value Plunge Azimuth T 2.02e+24 3 282 N 0.00e+00 72 22 P -2.02e+24 18 191 Moment Tensor: (dyne-cm) Component Value Mxx -1.68e+24 Mxy -7.41e+23 Mxz 5.96e+23 Myy 1.86e+24 Myz -4.24e+21 Mzz -1.79e+23 -------------- ---------------------- ######---------------------- #########--------------------- #############--------------------- ###############---------------###### ##################----------########## ##################-----############### T ###################-################## ##################---################## ##################-------################# ###############-----------################ #############--------------############### ##########-----------------############# ########--------------------############ #####-----------------------########## ##-------------------------######### ---------------------------####### -------------------------##### --------- -------------### ------ P ------------- -- --------- Global CMT Convention Moment Tensor: R T P -1.79e+23 5.96e+23 4.24e+21 5.96e+23 -1.68e+24 7.41e+23 4.24e+21 7.41e+23 1.86e+24 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20071031030454/index.html |
October 31, 2007, SAN FRANCISCO BAY AREA, CAL, MW=5.6 Goran Ekstrom Meredith Nettles CENTROID-MOMENT-TENSOR SOLUTION GCMT EVENT: C200710310304A DATA: IU II CU IC GE L.P.BODY WAVES: 49S, 85C, T= 40 MANTLE WAVES: 15S, 15C, T=125 SURFACE WAVES: 50S, 104C, T= 50 TIMESTAMP: Q-20071031072823 CENTROID LOCATION: ORIGIN TIME: 03:04:59.7 0.2 LAT:37.44N 0.02;LON:121.78W 0.02 DEP: 15.2 1.0;TRIANG HDUR: 1.5 MOMENT TENSOR: SCALE 10**24 D-CM RR=-0.330 0.054; TT=-2.270 0.053 PP= 2.600 0.059; RT= 0.553 0.183 RP= 0.496 0.160; TP= 0.947 0.050 PRINCIPAL AXES: 1.(T) VAL= 2.887;PLG=11;AZM=282 2.(N) -0.344; 74; 52 3.(P) -2.543; 12; 189 BEST DBLE.COUPLE:M0= 2.71*10**24 NP1: STRIKE=326;DIP=74;SLIP=-179 NP2: STRIKE=235;DIP=89;SLIP= -16 ----------- ------------------- #####------------------ #########------------------ ############--------------### ###############----------###### ##############------######### T ################-############# ##############---############# ###############------############ ############----------########### #########-------------######### ######-----------------######## ##---------------------###### ----------------------##### -------- ----------## ------ P ---------- -- ------ |
UCB Seismological Laboratory Inversion method: complete waveform Stations used: CMB MCCM ORV PKD RO4C SO5C Berkeley Moment Tensor Solution Best Fitting Double-Couple: Mo = 2.05E+24 Dyne-cm Mw = 5.48 Z = 14 Plane Strike Rake Dip NP1 146 -178 89 NP2 56 -1 88 Principal Axes: Axis Value Plunge Azimuth T 2.049 1 281 N 0.000 88 173 P -2.049 2 11 Event Date/Time: October 31, 2007, 03:04:54.82 UTC Event ID: nc40204628 Moment Tensor: Scale = 10**24 Dyne-cm Component Value Mxx -1.898 Mxy -0.766 Mxz -0.070 Myy 1.900 Myz -0.039 Mzz -0.002 ------ P ------------ ---- #------------------------ ####------------------------- ########------------------------- ##########------------------------# ############--------------------##### ##############-----------------######## ###############------------########### T ################---------############## #################-----################# ####################-#################### ###################--#################### ################-------################## ############-----------################ #########---------------############### #####--------------------############ #------------------------########## -------------------------######## ------------------------##### ------------------------# ------------------- ------- Lower Hemisphere Equiangle Projection |
Given the availability of digital waveforms for determination of the moment tensor, this section documents the added processing leading to mLg, if appropriate to the region, and ML by application of the respective IASPEI formulae. As a research study, the linear distance term of the IASPEI formula for ML is adjusted to remove a linear distance trend in residuals to give a regionally defined ML. The defined ML uses horizontal component recordings, but the same procedure is applied to the vertical components since there may be some interest in vertical component ground motions. Residual plots versus distance may indicate interesting features of ground motion scaling in some distance ranges. A residual plot of the regionalized magnitude is given as a function of distance and azimuth, since data sets may transcend different wave propagation provinces.
Left: ML computed using the IASPEI formula for Horizontal components. Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
Left: ML computed using the IASPEI formula for Vertical components (research). Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
![]() |
The focal mechanism was determined using broadband seismic waveforms. The location of the event (star) and the stations used for (red) the waveform inversion are shown in the next figure.
![]() |
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green's functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
cut o DIST/3.3 -40 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.06 n 3The results of this grid search are as follow:
DEPTH STK DIP RAKE MW FIT WVFGRD96 1.0 235 65 15 5.09 0.1996 WVFGRD96 2.0 60 75 40 5.23 0.2628 WVFGRD96 3.0 235 60 10 5.24 0.2935 WVFGRD96 4.0 230 80 -15 5.26 0.3183 WVFGRD96 5.0 230 75 -15 5.29 0.3400 WVFGRD96 6.0 235 80 -15 5.30 0.3594 WVFGRD96 7.0 235 80 -15 5.33 0.3794 WVFGRD96 8.0 235 80 -20 5.36 0.3976 WVFGRD96 9.0 235 80 -20 5.38 0.4122 WVFGRD96 10.0 235 80 -20 5.40 0.4237 WVFGRD96 11.0 235 80 -20 5.41 0.4331 WVFGRD96 12.0 235 80 -20 5.42 0.4401 WVFGRD96 13.0 235 80 -20 5.44 0.4449 WVFGRD96 14.0 235 80 -20 5.45 0.4476 WVFGRD96 15.0 235 80 -15 5.46 0.4493 WVFGRD96 16.0 235 80 -15 5.47 0.4494 WVFGRD96 17.0 235 80 -15 5.48 0.4486 WVFGRD96 18.0 235 80 -15 5.49 0.4466 WVFGRD96 19.0 235 80 -15 5.50 0.4438 WVFGRD96 20.0 235 80 -15 5.51 0.4396 WVFGRD96 21.0 235 80 -20 5.52 0.4348 WVFGRD96 22.0 235 80 -20 5.53 0.4290 WVFGRD96 23.0 235 80 -20 5.53 0.4223 WVFGRD96 24.0 235 80 -20 5.54 0.4150 WVFGRD96 25.0 235 80 -20 5.55 0.4072 WVFGRD96 26.0 235 75 -15 5.55 0.3992 WVFGRD96 27.0 235 75 -15 5.56 0.3911 WVFGRD96 28.0 235 75 -15 5.57 0.3828 WVFGRD96 29.0 235 75 -15 5.57 0.3742
The best solution is
WVFGRD96 16.0 235 80 -15 5.47 0.4494
The mechanism corresponding to the best fit is
![]() |
|
The best fit as a function of depth is given in the following figure:
![]() |
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed, the velocity model used in the predictions may not be perfect and the epicentral parameters may be be off. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
cut o DIST/3.3 -40 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.06 n 3
![]() |
Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated. The time scale is relative to the first trace sample. |
![]() |
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to the waveforms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
The following figure shows the stations used in the grid search for the best focal mechanism to fit the surface-wave spectral amplitudes of the Love and Rayleigh waves.
![]() |
|
The surface-wave determined focal mechanism is shown here.
NODAL PLANES STK= 59.99 DIP= 80.00 RAKE= 29.99 OR STK= 324.26 DIP= 60.51 RAKE= 168.49 DEPTH = 11.0 km Mw = 5.54 Best Fit 0.8679 - P-T axis plot gives solutions with FIT greater than FIT90
![]() |
Surface wave analysis was performed using codes from Computer Programs in Seismology, specifically the multiple filter analysis program do_mft and the surface-wave radiation pattern search program srfgrd96.
Digital data were collected, instrument response removed and traces converted
to Z, R an T components. Multiple filter analysis was applied to the Z and T traces to obtain the Rayleigh- and Love-wave spectral amplitudes, respectively.
These were input to the search program which examined all depths between 1 and 25 km
and all possible mechanisms.
![]() |
|
![]() |
Pressure-tension axis trends. Since the surface-wave spectra search does not distinguish between P and T axes and since there is a 180 ambiguity in strike, all possible P and T axes are plotted. First motion data and waveforms will be used to select the preferred mechanism. The purpose of this plot is to provide an idea of the possible range of solutions. The P and T-axes for all mechanisms with goodness of fit greater than 0.9 FITMAX (above) are plotted here. |
![]() |
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to the Love and Rayleigh wave radiation patterns. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. Because of the symmetry of the spectral amplitude rediation patterns, only strikes from 0-180 degrees are sampled. |
![]() |
![]() |
The WUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows (The format is in the model96 format of Computer Programs in Seismology).
MODEL.01 Model after 8 iterations ISOTROPIC KGS FLAT EARTH 1-D CONSTANT VELOCITY LINE08 LINE09 LINE10 LINE11 H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS 1.9000 3.4065 2.0089 2.2150 0.302E-02 0.679E-02 0.00 0.00 1.00 1.00 6.1000 5.5445 3.2953 2.6089 0.349E-02 0.784E-02 0.00 0.00 1.00 1.00 13.0000 6.2708 3.7396 2.7812 0.212E-02 0.476E-02 0.00 0.00 1.00 1.00 19.0000 6.4075 3.7680 2.8223 0.111E-02 0.249E-02 0.00 0.00 1.00 1.00 0.0000 7.9000 4.6200 3.2760 0.164E-10 0.370E-10 0.00 0.00 1.00 1.00