The ANSS event ID is uu50316580 and the event page is at https://earthquake.usgs.gov/earthquakes/eventpage/uu50316580/executive.
2006/06/11 10:01:50 40.251 -111.073 14.7 3.41 Utah
USGS/SLU Moment Tensor Solution
ENS 2006/06/11 10:01:50:0 40.25 -111.07 14.7 3.4 Utah
Stations used:
TA.M11A TA.M12A TA.M13A TA.N11A TA.N12A TA.N13A TA.P12A
US.ISCO UU.BGU UU.CTU UU.TCU
Filtering commands used:
cut o DIST/3.3 -20 o DIST/3.3 +70
rtr
taper w 0.1
hp c 0.04 n 3
lp c 0.07 n 3
br c 0.12 0.25 n 4 p 2
Best Fitting Double Couple
Mo = 2.24e+21 dyne-cm
Mw = 3.50
Z = 14 km
Plane Strike Dip Rake
NP1 4 65 -95
NP2 195 25 -80
Principal Axes:
Axis Value Plunge Azimuth
T 2.24e+21 20 97
N 0.00e+00 4 6
P -2.24e+21 69 265
Moment Tensor: (dyne-cm)
Component Value
Mxx 3.10e+19
Mxy -2.80e+20
Mxz -2.65e+19
Myy 1.66e+21
Myz 1.46e+21
Mzz -1.69e+21
#######--#####
######--------########
######------------##########
#####---------------##########
######----------------############
#####-------------------############
#####--------------------#############
######--------------------##############
#####---------------------##############
#####----------------------###############
#####--------- ----------###############
#####--------- P ----------######### ###
#####--------- ----------######### T ###
####----------------------######### ##
#####--------------------###############
####--------------------##############
####------------------##############
####-----------------#############
###---------------############
###-------------############
##----------##########
#------#######
Global CMT Convention Moment Tensor:
R T P
-1.69e+21 -2.65e+19 -1.46e+21
-2.65e+19 3.10e+19 2.80e+20
-1.46e+21 2.80e+20 1.66e+21
Details of the solution is found at
http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20060611100150/index.html
|
STK = 195
DIP = 25
RAKE = -80
MW = 3.50
HS = 14.0
The NDK file is 20060611100150.ndk The waveform inversion is preferred.
![]() |
The focal mechanism was determined using broadband seismic waveforms. The location of the event (star) and the stations used for (red) the waveform inversion are shown in the next figure.
|
|
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green's functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
cut o DIST/3.3 -20 o DIST/3.3 +70 rtr taper w 0.1 hp c 0.04 n 3 lp c 0.07 n 3 br c 0.12 0.25 n 4 p 2The results of this grid search are as follow:
DEPTH STK DIP RAKE MW FIT
WVFGRD96 1.0 15 45 95 3.21 0.5143
WVFGRD96 2.0 190 45 90 3.31 0.5963
WVFGRD96 3.0 165 40 55 3.38 0.5139
WVFGRD96 4.0 175 15 75 3.49 0.5424
WVFGRD96 5.0 185 10 90 3.48 0.6112
WVFGRD96 6.0 195 10 100 3.46 0.6448
WVFGRD96 7.0 10 80 80 3.42 0.6576
WVFGRD96 8.0 5 80 90 3.50 0.6644
WVFGRD96 9.0 10 80 80 3.46 0.6650
WVFGRD96 10.0 195 20 -80 3.50 0.6719
WVFGRD96 11.0 200 20 -75 3.49 0.6890
WVFGRD96 12.0 195 25 -80 3.50 0.7033
WVFGRD96 13.0 5 65 -95 3.50 0.7105
WVFGRD96 14.0 195 25 -80 3.50 0.7128
WVFGRD96 15.0 0 65 -100 3.51 0.7122
WVFGRD96 16.0 195 25 -80 3.50 0.7066
WVFGRD96 17.0 200 25 -75 3.50 0.6998
WVFGRD96 18.0 200 25 -75 3.50 0.6911
WVFGRD96 19.0 200 25 -75 3.50 0.6808
WVFGRD96 20.0 25 30 -50 3.55 0.6739
WVFGRD96 21.0 25 30 -50 3.57 0.6668
WVFGRD96 22.0 25 30 -50 3.57 0.6588
WVFGRD96 23.0 25 30 -50 3.58 0.6496
WVFGRD96 24.0 25 30 -50 3.58 0.6399
WVFGRD96 25.0 25 30 -55 3.57 0.6295
WVFGRD96 26.0 35 25 -55 3.55 0.6190
WVFGRD96 27.0 75 25 -30 3.54 0.6105
WVFGRD96 28.0 35 25 -55 3.57 0.5992
WVFGRD96 29.0 35 25 -55 3.58 0.5888
The best solution is
WVFGRD96 14.0 195 25 -80 3.50 0.7128
The mechanism corresponding to the best fit is
|
|
|
The best fit as a function of depth is given in the following figure:
|
|
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed, the velocity model used in the predictions may not be perfect and the epicentral parameters may be be off. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
cut o DIST/3.3 -20 o DIST/3.3 +70 rtr taper w 0.1 hp c 0.04 n 3 lp c 0.07 n 3 br c 0.12 0.25 n 4 p 2
|
| Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated. The time scale is relative to the first trace sample. |
|
| Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to the waveforms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
The WUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows (The format is in the model96 format of Computer Programs in Seismology).
MODEL.01
Model after 8 iterations
ISOTROPIC
KGS
FLAT EARTH
1-D
CONSTANT VELOCITY
LINE08
LINE09
LINE10
LINE11
H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS
1.9000 3.4065 2.0089 2.2150 0.302E-02 0.679E-02 0.00 0.00 1.00 1.00
6.1000 5.5445 3.2953 2.6089 0.349E-02 0.784E-02 0.00 0.00 1.00 1.00
13.0000 6.2708 3.7396 2.7812 0.212E-02 0.476E-02 0.00 0.00 1.00 1.00
19.0000 6.4075 3.7680 2.8223 0.111E-02 0.249E-02 0.00 0.00 1.00 1.00
0.0000 7.9000 4.6200 3.2760 0.164E-10 0.370E-10 0.00 0.00 1.00 1.00